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Abstract

We present a system to extract ranked lists of actors from fairytales ordered
by importance. This task requires more than a straightforward application
of generic methods such as Named Entity Recognition. We show that by
focusing on two specific linguistic constructions that reflect the intentionality
of a subject, direct and indirect speech, we obtain a high-precision method
to extract the cast of a story. The system we propose contains a new method
based on the dispersion of terms to rank the different cast members on a scale
of importance to the story.

1 Introducing the Problem
Today do I bake, tomorrow I brew,
The day after that the queen’s child comes in;
And oh! I am glad that nobody knew
That the name I am called is Rumpelstiltskin!

So says the song of the little man in Brother Grimm’s Rumpelstiltskin with which
he accidentally reveals his name to the queen. Advances in the task of Named
Entity Recognition (NER) make it possible for computer systems to recognize his
name as well. NER seeks to locate and extract atomic textual units into a predefined
set of categories (e.g. PERSON, LOCATION and ORGANIZATION).

Now that we can recognize Rumpelstiltskin as being the name of a person, how
do we know that he is a character or actor in the story? Are all named entities within
the category of PERSON in a story automatically actors? How about characters that
have no proper name in a story, but are referred to by nominals or noun phrases?
How do we know that they are part of the cast of a story?

Most NER systems are developed for the domain of non-fiction, including
newspapers, manuals and so forth. Applications of NER in literary texts or folk-
tales, however, have been discussed only marginally (see [13] for an exception).



Unfortunately, the knowledge gained from traditional NER systems is not easily
transferred to the domain of fictional texts, because of several incongruences be-
tween both domains. Named entities in fairytales, for example, are represented in
ways quite different from those in non-fiction. We find traditional proper nouns
such as Hansel and Gretel but also noun phrases such as the king and the big bad
wolf which, although expressed differently, have the same function as their proper
noun counterparts. To make things even more complicated, inanimate entities in
folktales may belong to the cast as well. A nice example of this can be found in the
story of The Fleeing Pancake, in which a pancake acts as the protagonist who tries
to escape from its predators.1

In this paper we present a method for extracting the cast from fictional texts.
The cast consists of a number of actors which we, following Bal [1], define as
“agents that perform actions” and have intentions. An action is seen as to cause
or experience an event. Actors are thus not necessarily human. As claimed by
structuralists such as Greimas, actors are distinguished from other entities by hav-
ing an intention. They strive towards a goal or aspire a particular aim [1]. The
identification of actors in a story therefore would require a method for detecting
intentionality. We show that direct and indirect speech are effective indicators of
intentionality. Extracting these constructions from a text gives us a high precision
method for retrieving the actors that form the cast of a story.

Not all actors in a story are equally important. The scale of importance ranges
from what is customary referred to as ‘the hero’ of a story to mere background
actors whose actions have relatively little influence on the course of the story. The
system we propose ranks the different cast members on a scale of importance to
the story on the basis of their dispersion in the text. We show that the ranking of
the system corresponds to a large extent with that of expert knowledge.

The outline of the paper is as follows. We begin with some background in-
formation about actors from the perspective of narratology and combine this with
insights from linguistics in Section 2. We then describe the corpus used and the
way the annotations of the corpus have been established. Section 4 presents the
computational methods used in this study. In Section 5 we report on the empiri-
cal results for the proposed method. The last section offers our conclusions and
directions for further research.

2 Backgrounds

2.1 Narratological Background

We ground our definition of an actor in the theory of narratology as developed by
Bal [1] who borrows from the French structuralist Greimas [6]. The underlying
presupposition in the proposal by Greimas is that human activity (thinking and
action) targets some aim. Actors are no different and show some intentionality of

1See for example http://www.pitt.edu/~dash/type2025.html#gander



achieving this aim or goal. This could be the achievement of something pleasant,
some object of desire (be it physical or non-physical) or something disagreeable.
Natural language reveals this intentionality in particular verbs (e.g. to fear, to wish).

Bal distinguishes six classes of actors. There are actors who pursue some aim
(called SUBJECT) and the aim itself (called OBJECT). A SUBJECT x strives towards
some aim y where y is an OBJECT. In a prototypical fairytale love story these roles
might be filled with ‘the prince who wants to marry the princess’. OBJECTS are not
necessarily human or even animate but could also be a mental state or an aspiration
such as ‘becoming king’. Other types of actors in Bal’s theory are POWER and
RECEIVER. POWER is often an abstraction that supports the SUBJECT in reaching
its goal or prevents it from getting there. The RECEIVER is the one to whom some
desired object is ‘given’. These two actor types are closely related to another pair of
actors, namely the HELPER and the OPPONENT. As their name reveals, HELPERS

help the SUBJECT in achieving its goal (although providing only incidental help)
when some OPPONENT intends to distract it from doing so.

Actors are thus not necessarily human or animate beings, but can be of a more
abstract nature as well, such as skills and abilities. In this paper we are only inter-
ested in the classes of actors that show intentions in the context of a particular story.
Whether they are animate or not is only partly based on reality and is determined
mainly in relation to the story itself.

2.2 Linguistic Background

A baseline approach to the problem would be to tag all animate nouns as actors.
However, this compromises both on precision and recall, because not all animate
entities are actors in a story and not all inanimate entities are not actors.2 Fol-
lowing [1], we claim it is better to look for entities that exhibit intentionality or
consciousness. Are there any linguistic clues for intentionality?

Sentences in which the intentionality of some entity is most clearly revealed
are sentences containing direct speech. In traditional grammar the quoted clauses
in the examples below are commonly characterized as (direct) objects of the verbs:

(1) “Lay your head on the chopping block,” said the old witch.

(2) “I heard the world cracking and I flee away,” answered the goat.

In sentences like these we read the text as if it was uttered by the actor. That we
should do so is both linguistically (by means of syntax) and orthographically (by
means of quotes) marked. However, speech can also be indirectly narrated, just as
thoughts, as the following examples show:

(3) The man asked why the old woman smashed all her eggs to pieces.

2Moreover, the identification of animate nouns would require a semantic lexicon, which is a rather
expensive resource not available for all languages.



(4) The robbers thought the farmer had nothing to hide.

In these examples of indirect speech it is less clear that the presented text has to
be attributed to the actor; it may by influenced by the narrator’s stance towards the
situation. Traditionally, these sentences are characterized as complement construc-
tions in which the subordinate clauses fill the role of (direct) objects of the verbs
of the main clause. Most verbs that take such ‘direct object clauses’ belong to one
of the following semantic types [7]:

i Verbs that express a command, question, promise, etc (i.e. verbs of communi-
cation such as to tell, to promise, to beg);

ii Verbs that denote knowing, believing, supposing, etc (to imagine, to under-
stand, to realize);

iii Verbs that indicate the evaluation of something (to appreciate, to regret);

iv Verbs that express a wish or desire (to wish, to hope);

v Verbs that denote a particular way of perception (to hear, to discover, to see).

Verhagen points at an interesting commonality between these five verb types:

“[. . . ] such predicates all evoke a mental state or process of a sub-
ject of consciousness (sometimes a process comprising a mental state,
as in the case of communication), and the content of the complement
is associated with this subject’s consciousness in a particular manner.”
[15, 100]

The resemblance with the idea of Greimas that actors are intentional entities aspir-
ing a particular goal or aim, should be clear. If we can automatically retrieve the
subject of the main clause of a complement construction, we have a good chance
of finding an actor in a story. Both instances of direct speech and indirect speech
provide us with cues about the intentionality of entities without the need to know
the verb’s semantics.

2.3 Computational Background

Few studies have focused on the recognition of actors in fictional texts. Declerck et
al. [2] present an ontology-based method for detecting and recognizing characters
in folktales. They concentrate on the interaction between a hand-crafted ontology
of folktale characters and the linguistic analysis of indefinite and definite nomi-
nal phrases. Although promising, given the rather small scale of the experiment
reported in this study, care must be taken when interpreting and generalizing the
results. Using both syntactic features and a semantic lexicon, Goh et al. [5] pro-
pose an automated approach to the identification of the main protagonist in fictional
texts, in particular fairytales. The method is not extended to the rest of actors.



Several studies have tried to tackle the problem of quote attribution. Quote
attribution is the task of automatically extracting quoted speech and assigning them
to their speakers. This task is interesting to us since we assume that the speakers of
quoted speech and the conceptualizers of indirect speech form the cast of a story.

The studies about quote or speaker attribution can be divided into two types of
approaches: rule-based approaches and machine-learning approaches. Rule-based
approaches are represented by e.g. [4, 11, 3], who on the basis of syntactic rules
and finite-state automata attempt to select the correct speaker of a piece of quoted
speech. Other studies make use of machine-learning methods, e.g. [10, 3]. To find
the correct speaker of a quote, Elson and McKeown [3] assign the quotes into one
of seven syntactic categories. Many of these categories unambiguously lead to the
identification of the speaker. For the remaining categories, a binary classifier is
used that predicts for each pair of candidate speaker and quote whether it is the
speaker or not on the basis of a feature vector. In contrast with most other work,
Ruppenhofer et al. [11] incorporate not only direct speech, but also indirect speech
and is thus more related to our work.

Most of the approaches mentioned above make use of external semantic lexi-
cons to distinguish nominal phrases that are potential characters from other nom-
inal phrases. The primary selection criterion is whether the nominal phrase falls
within the category of living things. However, as stated above, whether some entity
is animate or not is determined in relation to the story itself. The same lexicons
are used to select sentences containing verbs of communication. In our approach
we can do away with such external sources by formulating specific linguistic con-
structions. In doing so, our method is not restricted to, for example, verbs of com-
munication, and can identify the more general category of verbs that describe some
other mental state such as a thought, a belief or a desire. Another difference is that
our approach is not limited to speaker identification of directly quoted speech, but
incorporates the conceptualizer of indirect speech as well. Finally, our system is
not restricted to the identification of an externally defined set of animate actors, but
can in principle identify any subject of consciousness.

The method presented in this study not only tries to identify actors, but also
attempts to rank them on a scale of importance. To our knowledge there are no
computational studies that model the importance of actors in fictional texts.

3 Corpus, its annotation and tools

Corpus The corpus consists of a collection of 78 Dutch folktales from [12]. The
collection is part of the Dutch Folktale Database from the Meertens Institute.3 The
collection was selected because it represents a homogeneous set of texts: (1) all
texts are fairytales, (2) they are written in standard Dutch and (3) they are edited
by the same author. The average number of words per story is 824 and a story
consists of 44 sentences on average.

3http://www.verhalenbank.nl



Annotation To obtain gold-standard annotations of which actors are present in
the texts, we asked two experts4 in folktale research from the Meertens Institute
to give a list of the actors of the stories. In addition to this list they were asked to
rank the actors on a scale of importance to the story. Actors that were thought to be
of equal importance should be placed in the same position in the ranked list. If a
particular actor in a story is referred to with multiple names, we asked the experts
to list all alternative names together in single entries in the ranking. We did not
attempt to use or develop automatic procedures to resolve these coreferences.

Preprocessing and tools All texts were processed using the Dutch morpho-syntactic
analyzer and dependency parser Frog developed at the ILK Research Group [14].5

Frog contains a tokenizer that offers a high-precision quote detection system which
was crucial for extracting all quoted sentences from the stories.

4 Methodology

The system consists of two procedures: one for direct and one for indirect speech.
We developed a simple pattern matching algorithm for extracting the subject of sen-
tences with direct speech. First we extract all sentences containing quoted speech
(leaving out sentences that consist solely of quoted speech). Using the output of
the chunking module of Frog, the system then searches for the nearest head of a
noun phrase that is part of one of the following patterns:

(5) QUOTE VP NP (“You, our king”, cried the birds angrily.)

(6) VP NP QUOTE (“Oh dear”, said the queen, “only look at my combs!”)6

(7) NP VP QUOTE (The fox asked, “How many tricks do you know?”)

For indirect speech we extract the subject of matrix clauses of complementa-
tion constructions. We first locate all instances of subordinate conjunctions and
interrogatives that have a verb complement dependency relation. We then extract
the subject of the complement of the verb. We only included subjects that constitute
a definite or indefinite noun phrase. Some examples are:

(8) The queen wondered whether she would ever see her husband again.

(9) That the dragon was closing in, was obvious to the soldier.

By applying both procedures to all texts we extract a set of actors for each text.
The set of actors should be ranked according to the actors’ importance to the

story. Regular term weight measures such as TF×IDF are not appropriate for this

4Theo Meder and Marianne van Zuijlen
5http://ilk.uvt.nl/frog/
6Note that this example also matches with the first rule. Unlike in English, Dutch uses inversion

in subordinate clauses in which case the rule makes more sense.
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Figure 1: Lexical dispersion plot of actors in a version of The Fleeing Pancake.

ranking, because they estimate the importance of a term relative to the other texts
in the corpus, whereas we would like to have some intra-textual measure of impor-
tance. At first sight, frequency of occurrence does not seem to be a good measure
of importance either, because some actors might be referred to with high frequency
in only a short text span and may not be of overall importance to the story.

We therefore propose a ranking method that is based on the dispersion of actors
over a story. The basic idea is that more important actors are expected to appear
at more places in the story and are more evenly distributed over the story than less
important actors. Figure 1 plots the occurrences of the five actors in a version of
The Fleeing Pancake. The pancake is present throughout the entire text whereas
the fox, for example, is only briefly visible. Hence, we expect that the fox plays a
less prominent role than the pancake.

We chose to use Juilland et al.’s [8] D statistical coefficient, because it has
been reported as the most reliable dispersion measure [9, 190-191]. Juilland’s D is
calculated as:

D = 1− V√
n−1

(10)

where n is the number of equally sized chunks in a text and V is the variation
coefficient given by:7

V =
σ

v̄
(11)

where v̄ is the mean frequency of a word in the different chunks and σ is the stan-
dard deviation of the frequencies in the chunks given by:

σ =

√
∑

n
i=1(vi− v̄)2

n−1
(12)

7The parameter n has to be set manually. In our experiments we observed little effect of the
parameter within the interval [5,50] and set its value to n = 20.



rank ground truth subject baseline our system

1 (Janneman, Jan, ventje ‘lit-
tle man’)

Janneman Janneman

2 (heks ‘witch’, wijf ‘hag’) zak ‘bag’ heks ‘witch’
3 (tuinman ‘gardener’,

haagknipper ‘hedge cut-
ter’), (arbeider ‘worker’),
(slootgraver ‘ditch digger’,
man)

heks ‘witch’ kat ‘cat’

4 (kat ‘cat’) huisje ‘small house’ slootgraver ‘ditch digger’
5 - winkel ‘store’ wijf ‘hag’
6 - pond ‘pound’ haagknipper ‘hedge cutter’
7 - deur ‘door’ arbeider ‘worker’
8 - kat ‘cat’ -
9 - neen ‘no’ -

Table 1: Expert ranking and the results of the subject baseline (only the first 9 out
of 33 results are shown) and our system for the story Janneman in het papieren
huisje (‘The Devil (Witch) Carries the Hero Home in a Sack’). Alternative names
in the ground truth that refer to the same entity are placed between brackets.

Its values range from 0 (most uneven distribution) to 1 (most even distribution of
a word across all chunks). To give an impression of some of the values different
words can take, consider once more Figure 1. The vertical dotted lines mark the
chunk boundaries at n = 10. Both the farmer and the fox are referred to four
times, but because the farmer is more evenly distributed over the text it has a higher
dispersion value, D = 0.53 and D = 0.38, respectively.

5 Experiment

For all documents in our corpus we extract a ranked list of actors. In the ideal case,
the top of these lists contain the actors of a story. The extent to which this is the
case reflects how well relevant items are found by our method and how well they
are ranked according to the dispersion coefficient D. The results are evaluated by
means of Mean Average Precision (MAP).

The subject of a sentence is often an entity that performs an action. Hence,
subjects typically have a high chance of being an actor. We therefore compare our
approach to a baseline in which all nouns and proper names are tagged as actors if
they are classified by the dependency parser of Frog to hold a subject relation.

As an example, Table 1 presents the expert ranking, the results of the subject
baseline (only the first 9 out of 33 results are shown) and the system for the story
Janneman in het papieren huisje (‘The Devil (Witch) Carries the Hero Home in
a Sack’). Alternative names in the ground truth that refer to the same entity are



subject baseline system

complete top three complete top three

frequency ranking .739 .854 .909 .895
dispersion ranking .792 .878 .918 .9

Table 2: MAP for both the subject baseline and the system using the frequency
count ranking method and the dispersion based method. Scores are given for the
complete result lists and for the top three items in the result lists against the first
three ranks in the annotations.

subject baseline system

dispersion frequency dispersion frequency

subject baseline
dispersion – p < .0001 p < .0001 p < .0001
frequency – p < .0001 p < .0001

system
dispersion – p < .03
frequency –

Table 3: Pairwise Wilcoxon Signed-Rank Test using the dispersion and frequency
ranking method for both the subject baseline model and our system.

placed between brackets. Since the annotations make no distinction between a
canonical name of an actor and variants of that name, all alternative names are
included in the set of relevant names. As noted in Section 3, we did not attempt to
resolve coreferences. We thus make the simplifying assumption that all names in
the result lists are to be considered as unique entities. The Average Precision (AP)
for the baseline is .83. The system outperforms the baseline with a perfect score of
1.0, because it has identified solely relevant items.

We compare the proposed ranking method of actors to a method in which re-
trieved items are ranked according to their frequency of occurrence. The hypothe-
sis is that the dispersion method should do a better job in distinguishing important
from less important actors, because they are more important throughout the story
and not only in small text spans.

Table 2 gives a summary of the results. The subject baseline model performs
fairly well with a MAP of .739 using frequency ranking and .792 using dispersion
ranking. Our system outperforms the baseline markedly with a score of .918. For
our system, there is a minor difference between the two ranking methods.

To test whether the performance differences between the models are signifi-
cant, we computed for all four models the AP for each document in the corpus.
We then performed pairwise two-sided Wilcoxon Signed-Rank tests of which the
resulting p values can be found in Table 3. All performance differences are sig-



subject baseline system

dispersion frequency dispersion frequency

subject baseline
dispersion – p > .2 p > .1 p > .2
frequency – p > .05 p > .1

system
dispersion – –
frequency –

Table 4: Pairwise Wilcoxon Signed-Rank Test using the dispersion and frequency
ranking method for both the subject baseline and our system. AP is computed for
the top three items in the result lists against the top three ranks in the annotations.

nificant. The significant differences between the two ranking methods support the
hypothesis that dispersion is a helpful means to distinguish important actors from
more peripheral actors.

Although the MAP shows that the system is well capable of retrieving mostly
relevant items in the top retrieved results, it does not tell us whether the first, say,
three items are the most important actors in a story. Recall that the annotations of
the stories include a ranked list of actors. This allows us to evaluate whether the
top retrieved results are not only relevant but contain the most important actors –
as conceived by the annotators – as well.

The cast of a typical story contains only a few main actors and a range of
supporting actors. It has one or two heroes, an opponent of the hero and either
a wanted object or a helper of the hero. We recalculate the MAP scores using a
constrained set of possible relevant actors in which only the first three ranks in the
annotations are included. Using this set of relevant items, we compute the precision
for the three highest ranked actors in the result lists (see Table 2). Again the system
outperforms the baseline, albeit marginally, with a MAP of .895 using frequency
ranking and .9 using the dispersion method and .878 for the baseline model using
dispersion ranking and .854 using frequency ranking.

We performed the same Wilcoxon Signed-Rank tests as before to test for sig-
nificance. Table 4 presents the results. We see that there are some small effects,
but none of the performance differences are significant. This is interesting, because
for the complete result lists, we saw significant differences between all combina-
tions of systems (see Table 3). This suggests that the performance differences
concentrate on the ranking of less important actors. It is also in this scope that the
dispersion of a term is an effective indicator if its importance.

6 Conclusion

The approach taken in this paper to extract the cast from fictional texts proves
to be successful. In line with literary scholars our results support the idea that



intentionality serves as a strong feature to identify actors. The intentionality is
reflected in the use of two related but structurally different linguistic constructions:
direct and indirect speech. By extracting these constructions from a text we obtain
a high-precision method for retrieving the cast of a story. The system performs
significantly better than the baseline model that marks all nouns in subject positions
as cast members.

Besides the mere identification of actors, we proposed a ranking method of the
actors based on the dispersion of actors over a text. The hypothesis was that actors
that are more evenly distributed throughout the text are more important than actors
that only appear in short text spans. The results showed that ranking by means of
dispersion gives a significant performance gain over ‘simple’ frequency counts.

We focus our recommendations for future research on two points. First, the
system proposed in this paper depends heavily on the presence of direct and in-
direct speech. However, neither is necessarily present in every text. To make the
system more robust, it should be able to deal with these texts as well. A good start-
ing point to improve the stability is to use the output of the present system to learn
about contexts other than direct and indirect speech in which actors appear.

We made the simplifying assumption that all retrieved items are unique entities,
whereas in fact they corefer to a small subset of entities. Our second point of future
work is directed towards resolving these coreferences, which will require adapta-
tion of existing coreference resolution models to the domain of fictional texts.
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