

Hierarchical Topic Detection

in large digital news archives

Dolf Trieschnigg (UT) Wessel Kraaij (TNO)

Hierarchical Topic Detection

 Conveniently group documents in a Yahoo like hierarchy, discussing topics in increasing level of detail:

Overview

- TDT evaluation program and HTD task
- Often used approach
- Our approach
- Experiments & results
- Conclusions & future work

TDT evaluation program

- Discovering and threading together topically related material
- Old topic detection task
 - hard, flat clustering (partitioning) of corpus
 - shortcomings:
 - no overlapping clusters/topics
 - only one level of detail makes hard to evaluate: system detail vs. ground truth detail
 - → new HTD task in 2004

TDT 2004 new HTD task

- Multiple levels of detail
- Fuzzy (overlap between clusters)

TDT5 corpus & ground truth statistics

- 400,000 multilingual documents
 - English, Arabic and Mandarin news wire
 - English machine translation available
- ground truth: 250 annotated topics
 - involving 9000 documents
 - average topic size: 52 docs(min: 1, max: 809, median: 16)
 - no hierarchy!

Evaluation

- Find system clusters with minimal cost:
 - Detection cost (false alarms and misses)
 - New: travel cost (to "find" the best cluster)

Evaluation example

Often used approach

- Hierarchical agglomerative clustering:
 - Create distance matrix
 - distance metric: cosine, dice, jaccard etc.
 - documents as singleton clusters
 - Do...
 - Join most similar (least dissimilar) clusters
 - Calculate distances between new and existing clusters (different methods for single, complete and average link clustering)
 - ... until one cluster remains

Example: complete link

Symmetric dissimilarity matrix

	Α	В
В	0.6	
С	8.0	0.7

complete: max-

single: min

	D		
С	8.0	*	

Often used approach approach (cont'd)

- Hierarchical agglomerative clustering
 - Results in binary tree
 - Difficulties:
 - time complexity $> O(N^2)$
 - space complexity O(N²)
 - unmodified not applicable for 400,000 document set

Our approach

- Cluster sample (20.000 documents)
 - O(N²) still feasible
 - → binary unbalanced cluster tree
- Optimize for cost metric
 - Rebranching the tree
 - → more balanced cluster tree
- Assign remaining 380,000 documents to clusters obtained from sample
 - → fuzzy cluster tree

Cluster sample

- Distance metric
 - Cross entropy reduction using background model of document collection
- Agglomerative hierarchical clustering
 - Experiments with complete, single and average linkage
- Results in a binary unbalanced tree

Optimize for cost metric

- Reduce travel cost without increasing detection cost
- Rebranch unbalanced tree:
 - remove clusters with dissimilarity value above certain threshold
 - combine "branches" of clusters in a better balanced tree with optimal (metric) branching factor

Assigning remaining documents

- Index sample
- Use remaining documents as queries
- Assign to clusters of best documentlikelihood matches.
- Results in fuzzy cluster result

Result (add to cluster 2 and 3):

Experiments & results

- Experimented with cluster method
 - average link method gave best results
 - single link suffered from chaining
 - complete link suffered from "chaining"
 - rebranching improved results
- Adding documents to multiple clusters pays off: false alarm relatively cheap
- System performed best in TDT 2004

Results (sample)

Topic	System Cluster	# Ref	# Sys	# Union	Depth	PMiss	Pfa	Travel Cost	Detection Cost	Min. Cost
55001	v13965	5	261	5	8	0	0.0009	0.0028	0.0045	0.0039
55002	v15445	1	133	1	7	0	0.0005	0.0022	0.0023	0.0023
55003	v14140	27	133	27	11	0	0.0004	0.0035	0.0019	0.0024
55004	v16401	13	759	13	7	0	0.0027	0.0025	0.0131	0.0095
55005	v18100	81	2826	80	10	0.0123	0.0099	0.0031	0.0607	0.0411

Low precision (not in cost)

High recall

Discussion

- Metric intuitive?
 - Travel cost not working out properly
 - Preferring balanced hierarchies
 - Preferring certain branching factor
 - Not discouraging fuzzy (powerset) clusters enough
 - How to judge hierarchy using non-hierarchical ground truth?:
 - Precision not important enough
- Is such a large hierarchy usable?
 - for cluster based retrieval?
 - for browsing and navigation of a large unlabelled dataset?

Conclusions and future work

- Sample based clustering method looks promising
 - How to improve precision?
 - Samples of different size: scalable?
 - Influence of distance metric?
- Evaluation metric should be improved
 - discouraging scattering documents
- How can it be made useful for browsing?

Questions?

