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a b s t r a c t

Over the years, various meta-languages have been used to manually enrich documents
with conceptual knowledge of some kind. Examples include keyword assignment to cita-
tions or, more recently, tags to websites. In this paper we propose generative concept mod-
els as an extension to query modeling within the language modeling framework, which
leverages these conceptual annotations to improve retrieval. By means of relevance feed-
back the original query is translated into a conceptual representation, which is subse-
quently used to update the query model.

Extensive experimental work on five test collections in two domains shows that our
approach gives significant improvements in terms of recall, initial precision and mean
average precision with respect to a baseline without relevance feedback. On one test col-
lection, it is also able to outperform a text-based pseudo-relevance feedback approach
based on relevance models. On the other test collections it performs similarly to relevance
models. Overall, conceptual language models have the added advantage of offering query
and browsing suggestions in the form of conceptual annotations. In addition, the internal
structure of the meta-language can be exploited to add related terms.

Our contributions are threefold. First, an extensive study is conducted on how to effec-
tively translate a textual query into a conceptual representation. Second, we propose a
method for updating a textual query model using the concepts in conceptual representa-
tion. Finally, we provide an extensive analysis of when and how this conceptual feedback
improves retrieval.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Explicit and often manually curated knowledge is frequently being added to documents for a variety of reasons, e.g., to
increase their findability or to aid navigation of the collection to which they belong. Such knowledge is typically expressed in
a meta-language and can be either formal (e.g., in the form of a thesaurus or ontology) or more informal (e.g., in the form of
user-generated tags). Annotations of this kind may be found in a broad range of domains and a variety of document types.
News articles, for example, can be annotated with concepts from the NewsCodes taxonomies provided by the IPTC. Another
example is the annotation of bibliographic records with indexing terms from a controlled vocabulary. In the biomedical do-
main citations in the MEDLINE database are manually indexed with concepts from the Medical Subject Headings (MeSH)
thesaurus. We will refer to this broad range of meta-languages as concept languages and to their vocabulary terms as con-
cepts. Tables 1 and 2 show two examples of document–concept annotations from the two test collections we describe later.
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Table 1
Example of a CSA document from the CLEF domain specific test collection, annotated with SA concepts.

Document text [CSASA-1-EN-9600048] Concept annotations

Immigration and Economic Dependence in the US: approaches to presenting logistic regression results
Logistic regression models are found increasingly in the social science literature, but the coefficients
can be difficult to interpret for novice users. Strategies are discussed that can enhance the substantive
interpretation of logistic regression results. . .

United States of America

Immigrants

Citizens

Benefits

Social security

Regression analysis

Table 2
Example of a MEDLINE document (title and part of abstract) annotated with MeSH concepts.

Document text [PMID: 10077651] Concept annotations

Mechanism of increased iron absorption in murine model of hereditary hemochromatosis:
increased duodenal expression of the iron transporter DMT1
Hereditary hemochromatosis (HH) is a common autosomal recessive disorder characterized
by tissue iron deposition secondary to excessive dietary iron absorption. We recently reported
that HFE, the protein defective in HH, was physically associated with the transferrin receptor (TfR)
in duodenal crypt cells and proposed that mutations in HFE attenuate the uptake of
transferrin-bound iron from plasma by duodenal crypt cells, leading to up-regulation
of transporters for dietary iron. . .

Animals

Carrier proteins

Cation transport proteins

Duodenum

Hemochromatosis

Iron

Iron-binding proteins

Mice

Mutation
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The introduction of concept languages was initially driven by a need to facilitate search and navigation of the collection
(Roberts, 1984; Joyce & Needham, 1958). Concepts were defined to unambiguously and precisely represent the content of
documents. Today, most of these early retrieval systems have been replaced by full-text search systems which have been
shown to be at least as effective (Cleverdon, Mills, & Keen, 1966). Since full-text search systems do not require a manually
curated concept language, they are far less labour-intensive. Despite the effectiveness of full-text search, full-text indexing
terms (which typically comprise of all the terms used in the documents in a given collection) can be more ambiguous or less
expressive than concepts. Not surprisingly then, information retrieval (IR) researchers continue to study ways of incorporat-
ing information from concept languages to address problems in textual query representations. For example, a textual query
may be mapped to one or more concepts in a thesaurus and expanded with their synonymous terms (Voorhees, 1994). Re-
sults of such approaches, however, have been mixed at best.

In this paper we show that a concept language can be effectively used to improve full-text retrieval. In a two step process
that extends on relevance feedback and uses a conceptual representation as a pivot language we improve the query model
representing the information need of the user.

In the first step, the textual information need is translated into a conceptual representation. In a process we call concep-
tual query modeling, feedback documents from an initial retrieval run are used for obtaining a conceptual query model. This
model represents the user’s information need at a different, higher conceptual level than the original query. The intuition
behind this step is that this conceptual representation gives an unambiguous representation of the information need. In con-
trast to traditional textual relevance feedback, where the query refinement is biased towards terms occurring in the initial
query, this intermediate conceptual representation is less dependent on the original query words. On its own, this explicit
conceptual representation can be used to aid retrieval, for example by suggesting relevant concepts to the user (Meij & de
Rijke, 2007), or by matching it to a conceptual representation of the documents (Trieschnigg et al., 2009). In the second step,
however, we translate the conceptual query model back into a contribution to the textual query model. We hypothesize that,
since the textual representation of documents is more detailed than its conceptual representation,1 retrieving information
with a textual query representation translated from a conceptual form, results in better retrieval performance than strictly
matching with only concepts. Essential to these two translation steps is the estimation of a query model, both for terms and
for concepts. The textual query should be captured by a small set of specific concepts and the conceptual query model should
be translated to specific textual terms. To achieve this, we employ an expectation maximization algorithm inspired by par-
simonious language models (Hiemstra, Robertson, & Zaragoza, 2004).

The paper is organized around a number of research questions that aim to investigate the effectiveness of our proposed
conceptual language models and place it in the context of state-of-the-art full-text retrieval systems. These questions are
defined as follows:
1 A document is typically represented by far more terms than concepts.



450 E. Meij et al. / Information Processing and Management 46 (2010) 448–469
1. To estimate a conceptual query model we propose a method that looks at the top-ranked documents in an initially
retrieved set (Section 4.1). In order to assess the effectiveness of this step, we compare the results of using these concepts
with a standard language modeling approach. Moreover, since this method relies on pseudo-relevant documents from an
initial retrieval run, we also compare the results of our conceptual query models to another, established pseudo-relevance
feedback algorithm based on relevance models. We ask: What is the relative retrieval effectiveness of this method with
respect to the standard language modeling and conventional pseudo-relevance feedback approach?

2. For the estimation of both the conceptual query model and generative concept model we apply an iterative EM algorithm
which emphasizes more informative terms. We ask: What is the impact of applying this algorithm compared to conven-
tional estimates in terms of retrieval effectiveness?

3. The proposed method based on conceptual language models is dependent on a number of parameters. We ask: What is
the sensitivity of the method to its parameter settings? How robust are the results across different collections and test
sets?

4. By definition, curated knowledge is domain specific. So we ask the question: How portable is our conceptual language
model? What are the results of the model across multiple test collections? Can we say anything about which evaluation
measures are helped most using our model? Is it mainly a recall or precision-enhancing device?

We make the following contributions in this article:

� We propose a method for determining the concepts that are most likely to be associated with a given query, which allows
effective conceptual (blind) relevance feedback. Moreover, this explicit conceptual query representation may be used as a
means of suggesting query-related concepts to the user.

� We propose generative concept models, that are used to generate terms for concepts related to the query. Besides this
particular application, they may also be employed to determine semantic relatedness.

� Finally, we provide an empirical comparison of our proposed method to existing relevance feedback models.

The remainder of this paper is organized as follows: We discuss related work in Section 2. We then describe our retrieval
framework and our conceptual language models are introduced next. We describe our experimental setup in Section 5 and
report on the outcomes of our experimental evaluation and discuss our findings in Section 6. We end with a concluding
section.

2. Related work

Work related to our proposed conceptual language models may be found in overlapping areas, viz. query expansion, con-
ceptual retrieval, and cluster-based retrieval. These will be discussed in this section.

Query expansion aims at bridging the vocabulary gap between queries and documents by adding and reweighing terms in
the original query (Voorhees, 1994). Query expansion approaches can be local or global (Xu & Croft, 1996). Local query
expansion methods try to take into account the context of a query; one might, for example, consider a user’s history or pro-
file, in order to automatically enrich queries (Korfhage, 1984). Much later, similar notions were adopted in a language mod-
eling setting (Bai et al., 2008). Finkelstein et al. (2002) propose to use the local context of query terms as they appear in
documents to locate additional query terms.

Relevance feedback is a form of local query expansion that relies on the analysis of documents from an initial retrieval
run. The retrieved documents serve as examples to select additional query terms (Rocchio, 1971). Pseudo-relevance feedback
methods assume the top-ranked documents to be relevant, but explicit or implicit relevance judgements from users may also
be used (Anick, 2003; Keskustalo, Järvelin, & Pirkola, 2008; Vakkari, Jones, Macfarlane, & Sormunen, 2004; Xu & Croft, 1996).
The recent interest of the semantic web community regarding models and methods related to ontologies have also sparked a
renewed interest in using ontological information for relevance feedback (Bhogal, Macfarlane, & Smith, 2007; Rocha, Schw-
abe, & Aragao, 2004). In a language modeling setting, local query expansion has been applied to estimate query language
models (Lafferty & Zhai, 2003; Tao & Zhai, 2006) or relevance models (Lavrenko & Croft, 2001); we elaborate on the latter
in Section 3. Our method is related to these approaches in that it also looks at the results of an initial retrieval run. Instead
of looking at the terms in these documents, however, we consider the concepts associated with the documents.

Global query expansion uses global collection statistics or ‘‘external” knowledge sources such as concept languages to en-
hance the query. For example, concepts and lexical-syntactic relations as defined in a thesaurus have been used for query
expansion, with varying degrees of effectiveness (Bai, Song, Bruza, Nie, & Cao, 2005; Gao, Nie, & Bai, 2005; Meij & de Rijke,
2007; Roberts et al., 1984; Voorhees, 1994).

Our method can be viewed as a combination of a local and global expansion method; a local expansion method is used to
obtain a conceptual representation of a query, whereas a global method is used to translate the conceptual representation to
a textual query contribution.

Using a conceptual representation obtained from pseudo-relevance feedback has been investigated by different research-
ers in the biomedical domain. Srinivasan (1996) proposes adding concepts directly to an initial query and reports the largest
improvement in retrieval effectiveness when another round of blind relevance feedback on vocabulary terms is applied after-
wards. This method is similar to ours, although there are distinct differences in her approach and evaluation. For one,
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Srinivasan (1996) creates a separate ‘‘concept index” in which tokenized concept labels are used as terms. In this way,
searching using a concept labeled ‘‘Stomach cancer” also matches the related, but clearly different concept ‘‘Breast cancer”
because they share the word ‘‘cancer”. In our opinion, this obfuscates the added value of using clearly defined concepts;
searching with a textual representation containing the word ‘‘cancer” will already result in matching related concepts.
Therefore, we decide to use unique concept identifiers in our conceptual representation. Srinivasan (1996) concludes that
concepts are beneficial for retrieval, but remarks that the OHSUMED collection used for evaluation was quite small. Our re-
search uses the larger TREC Genomics test collections and, additionally, investigates the use of document level annotations in
another domain using the CLEF domain specific test collections. Finally, we remark that our proposed model is an extension
of the language modeling retrieval framework, whereas Srinivasan (1996) extends a vector space retrieval model. Camous,
Blott, and Smeaton (2006) also use the annotations of the top-5 retrieved documents to obtain a conceptual query represen-
tation, but incorporate them in a different fashion. The authors use them to create a new ranked list of documents, which is
subsequently combined with the initially retrieved documents. In contrast, we explicitly update the original query model.

All of the methods based on concept languages need a way of mapping between the concepts and their textual represen-
tation. Where the described approaches look for exact occurrences of the concepts in the text, we use the vocabulary terms
associated with concepts to make this connection, as detailed in Section 4.

Taking a step back from query expansion, many different ways of directly improving text-based retrieval by incorporating
concepts or a concept language have been proposed. For example, the entries from a concept language may be used to define
the indexing terms employed by the retrieval system. In the absence of a concept language, similar information might be
derived from statistical methods (Joyce et al., 1958; Salton, 1971; Sparck-Jones & Jackson, 1970). For instance, a co-occur-
rence analysis of the entire collection might be applied to estimate dependencies between vocabulary terms (Bai et al.,
2005; Chung, 2004). Alternatively, term dependencies may be determined on a query-dependent subset of the collection,
such as a set of initially retrieved documents (Metzler & Croft, 2005; Mitra, Singhal, & Buckley, 1998; Xu & Croft, 1996). These
dependencies may then be employed to locate terms related to the initial query.

One of the first attempts at automatically relating concepts with text was introduced in the 1980s. Giger (1988) incorpo-
rated a mapping between concepts from a thesaurus and words as they appear in the collection. The main motivation was to
move beyond text-based retrieval and bridge the semantic gap between the user and the information retrieval system, a
motivation closely related to ours. His algorithm first defines atomic concepts, which are string-based concept to term map-
pings. Then, documents are placed in disjoint groups based on so-called elementary logical conjuncts, which are defined
through the atomic concepts. At retrieval time, the query is parsed and the sets of documents with the lowest distance to
the requested concepts are returned. His ideas relate to recent work done by Zhou, Hu, Zhang, Lin, and Song (2006) and Zhou,
Hu, and Zhang (2007), who use so-called topic signatures to index and retrieve documents. These signatures are comprised of
recognizing named entities within each document and query; when named entities are not available, term pairs are used.
Their named entity recognition step is automated and might not be completely accurate; we suspect that the errors in this
concept detection process do not strongly affect retrieval performance because pairs of concepts (topic signatures) are used
for retrieval. In our method, we rely on manually curated concept annotations, making the topic signatures superfluous.

Trieschnigg, Kraaij, and Schuemie (2007) also use named entity recognition to obtain a conceptual representation of que-
ries and documents. They conclude that searching only with an automatically obtained conceptual representation seriously
degrades retrieval when searching for short documents (citations). Interestingly, the same approach performs on par with
text-only search when larger documents (full-text articles) are retrieved.

Instead of using named entity recognition, Gabrilovich and Markovitch (2007) employ document-level annotations, in the
form of Wikipedia categories. They represent the categories as term vectors, where the individual term weights are deter-
mined using TF.IDF scores from the documents that are labeled with the concept at hand. In this way, the strength between
vocabulary terms and concepts can be quantified, which can subsequently be used to generate vectors of concepts for a piece
of text—either a document or query. This approach is similar to the topic modeling approach described by Wei (2007), which
uses Open Directory Project (ODP) concepts in conjunction with generative language models. Instead of using concept–doc-
ument associations, however, she uses an ad hoc approach based on the descriptions of the concepts in the concept language
(in this case, ODP categories). Our conceptual language models are related to these approaches in that they also bridge be-
tween concepts and terms. We, however, use an iterative EM algorithm in tandem with a statistical translation model to
establish the association between terms and concepts. Interestingly, all of these approaches open up the door to providing
conceptual relevance feedback to users. Instead of suggesting vocabulary terms that are related to the query, we can now
suggest related concepts that can, for example, be used for navigational purposes (Keskustalo et al., 2008; Meij & de Rijke,
2007; Silveira & Ribeiro-Neto, 2004; Vakkari et al., 2004). Trajkova and Gauch (2004) describe another possible application;
their system keeps track of a user’s history by classifying visited web pages onto the concepts from the ODP.

Further examples of mapping queries to conceptual representations can be found in the area of web query classification.
Broder et al. (2007) use a pseudo-relevance feedback technique to classify rare queries into a commercial taxonomy of web
queries, with the goal to improve web advertisements. A classifier is used to classify the highest ranked results, and these
classifications are subsequently used to classify the query by means of voting. We use a similar method to obtain the con-
ceptual representation of our query described in Section 4.1, with the important difference that all our documents have been
manually classified. Mishne et al. (2006) classify queries into taxonomies using category-based web services. Shen, Sun,
Yang, and Chen (2006) improve web query classification by mapping the query to concepts in an intermediate taxonomy
which in turn are linked to concepts in the target taxonomy. In our work, we use a single concept taxonomy which is used
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as a pivot language to improve the textual query model. Chen, Xue, and Yu (2008) use a taxonomy to suggest keywords. After
mapping the seed keywords to a concept hierarchy, content phrases related to the found concepts are suggested. In our ap-
proach the concepts are used to update the query model, i.e., to update the probabilities of terms based on the found con-
cepts rather than the addition of related discrete terms or phrases.

Concepts can be recognized at different levels of granularity, either at the term level, by recognizing concepts in the text,
or at the document level, by using document-level annotations or categories. While the former can be described as a form of
concept-based indexing (Lancaster, 1982), the latter is more related to text classification. Indeed, the mapping of vocabulary
terms to concepts as described above is in fact a text (or concept) classification algorithm (Sparck-Jones & Needham, 1968).

Work done on cluster-based retrieval can be viewed as a variation on the same theme; in our case the clusters are defined
by the concepts that are associated with the documents in the collection. Kurland et al. (2004), for example, determine over-
lapping clusters of documents in a collection, which are considered facets of the collection. They use a language modeling
framework in which their aspect-x algorithm smoothes documents based on the information from the clusters and the
strength of the connection between each document and cluster. Liu and Croft (2004) evaluate both the direct retrieval of
clusters and cluster-based smoothing. Their CBDM model is a mixture between a document model, a collection model,
and the cluster each document belongs to, which is able to significantly outperform a standard query-likelihood baseline.
Instead of smoothing documents, Minker, Wilson, and Zimmerman (1972) use cluster-based information for query expan-
sion. The authors evaluate their algorithm on several small test collections, without achieving any improvements over the
unexpanded queries. More recently, Lee, Croft, and Allan (2008) have shown that detecting clusters in a set of (pseudo-)rel-
evant documents is helpful for identifying dominant documents for a query and, thus, for subsequent query expansion, a
finding which was corroborated on different test collections by Kurland (2008). These approaches all exploit the notion that
‘‘associations between documents convey information about the relevance of documents to requests” (Jardine & van Rijsber-
gen, 1971). Indeed, if we have evidence that a given concept is relevant for a particular query, it is natural to assume that all
documents labeled with this concept have a higher prior probability of being relevant to the query. This is the main moti-
vating idea for our current work.

3. The KL-divergence retrieval framework

The success of generative language models in statistical machine translation and automatic speech recognition inspired
several IR researchers to re-cast IR in a generative probabilistic framework, by representing documents as generative prob-
abilistic models. Such models can be used to compute the probability of observing a sequence of terms, by computing the
product of the probabilities of observing the individual terms. The first published application of generative models for IR
was based on the multiple Bernoulli distribution (Ponte & Croft, 1998), but the simpler multinomial unigram model became
the mainstream model (Hiemstra, 1998; Miller, Leek, & Schwartz, 2000). Recent work has addressed some of the shortcom-
ings of the multinomial model for modeling text and considers the Dirichlet compound multinomial distribution instead (Xu
& Akella, 2008). This distribution provides a better model of the ‘burstiness’ of language and the authors show significant
improvements over the standard multinomial model. Whether it is a better candidate for representing text in our current
context remains a subject for future work.

In the multinomial unigram model, each document D is represented as a multinomial probability distribution PðtjhDÞ over
all the terms t in the vocabulary. At retrieval time, each document is ranked according to the likelihood of having generated
the query, i.e., the probability that the query terms ðt 2 QÞ are sampled independently and identically from the document
language model (Hiemstra, 1998):
Score ðQ ; DÞ / PðQ jDÞ ¼
Y
t2Q

PðtjhDÞnðt;QÞ; ð1Þ
where nðt;QÞ denotes the count of term t in query Q. This model was generalized soon after, by realizing that an information
need can also be modeled by a language model. In this way, a more general and flexible retrieval model can be obtained by
using a comparison of two language models as the basis for ranking. Several authors proposed the use of the Kullback–Lei-
bler (KL)-divergence for ranking, since it is a well established measure for the comparison of probability distributions with
some intuitive properties—it always has a non-negative value and equal distributions receive a zero divergence value (Laff-
erty et al., 2001; Ng, 2001; Xu & Croft, 1999). Using KL-divergence, documents are scored by measuring the divergence be-
tween a query model hQ and each document model hD. Since we want to assign a high score for high similarity and a low
score for low similarity, the KL-divergence is negated for ranking purposes. More formally, the score for each query–docu-
ment pair using the KL-divergence retrieval model is:
Score ðQ ; DÞ ¼ �KLðhQkhDÞ ¼ �
X
t2V

PðtjhQ Þ log
PðtjhQ Þ
PðtjhDÞ

¼ �
X
t2V

PðtjhQ Þ log PðtjhDÞ þ
X
t2V

PðtjhQ Þ log PðtjhQ Þ; ð2Þ
where V denotes the set of all terms used in all documents in the collection. KL-divergence is also known as the relative
entropy, which is defined as the cross-entropy of the observed distribution (in this case the query) as if it was generated
by a reference distribution (in this case the document) minus the entropy of the observed distribution. KL-divergence can
also be measured in the reverse direction (also known as document likelihood), but this leads to poorer results for ad-hoc



E. Meij et al. / Information Processing and Management 46 (2010) 448–469 453
search tasks (Lavrenko, 2004). The entropy of the query,
P

t2VPðtjhQ Þ log PðtjhQ Þ, is a query specific constant and can thus be
ignored for ranking purposes. In fact, one could argue that ranking on just the cross-entropy term provides a more concise
ranking formula and is a suitable distance measure for comparing probability distributions in its own right (Kraaij, 2004).
When the query model is generated using the empirical, maximum-likelihood estimate (MLE) on the original query, i.e.,
Pðtj~hQ Þ ¼ PðtjQÞ ¼ nðt;QÞ
jQ j ; ð3Þ
where jQ j indicates the length of the query, it can be shown that documents are ranked in the same order as using the query
likelihood model from Eq. (1) (Zhai, 2002). In fact, a query is just a verbal expression of an underlying information need. The
query model is therefore an estimate of the model for the underlying information need, sometimes called a relevance model
(Lavrenko & Croft, 2001). This initial estimate can be improved by adding and reweighing terms, using external resources or
relevance feedback techniques as described in Section 2. Next, we describe our baseline query modeling (Section 3.1) and
document modeling (Section 3.2) approaches. In Section 4 we define our conceptual language models on top of these base-
line approaches.

3.1. Query models

Relevance models (Lavrenko & Croft, 2001) are one of the baselines we employ. Here, it is assumed that for every infor-
mation need there exists an underlying relevance model and that the query and relevant documents are random samples
from this model. The query model, parametrized by hQ , may be viewed as an approximation of this model. However, in a
typical retrieval setting improving the estimation of hQ is problematic because we have no or only limited training data.
The authors present two methods for estimating relevance models without training data by constructing models from the
queries and a set of pseudo-relevant documents, using different independence assumptions. They determine the probability
of observing t after having observed Q as:
PðtjĥQ Þ � Pðtjq1; . . . ; qkÞ ¼
Pðt; q1; . . . ; qkÞ
Pðq1; . . . ; qkÞ

¼ Pðt; q1; . . . ; qkÞP
t0Pðt0; q1; . . . ; qkÞ

; ð4Þ
where q1; . . . ; qk are the individual query terms. Under their method 2, the query terms are independent of each other, but
keep their dependence on t:
Pðt; q1; . . . ; qkÞ ¼ PðtÞ
Yk

i¼1

X
D2DQ

PðqijhDÞPðhDjtÞ; ð5Þ
where DQ is a set of pseudo-relevant documents and
PðhDjtÞ ¼
PðtjhDÞPðDÞ

PðtÞ : ð6Þ
Then, in order to obtain a query model that is a better estimate of the information need, the initial query Pðtj~hQ Þmay be inter-
polated with the expanded part PðtjĥQ Þ (Balog, Weerkamp, & de Rijke, 2008; Kurland, Lee, & Domshlak, 2005; Rocchio, 1971;
Zhai & Lafferty, 2001). Effectively, this reweighs the initial query terms and provides smoothing for the relatively sparse ini-
tial sample:
PðtjhQ Þ ¼ ð1� kQ ÞPðtj~hQ Þ þ kQ PðtjĥQ Þ: ð7Þ
In the next section, we will describe how we extend this work by leveraging conceptual knowledge in the form of document
annotations to improve the estimation of PðtjĥQ Þ. We discuss the issue of setting the smoothing parameter kQ in Section 5.3.

3.2. Document models

It is an essential condition for retrieval models that are based on measuring the probability or cross-entropy of observed
data given a reference generative model, that the reference model is adequately smoothed. Smoothing is applied both to
avoid zero-frequency problems occurring with a MLE approach and to account for general and document-specific language
use. We adopt Jelinek–Mercer smoothing by considering each document to be a mixture of a document-specific model and a
more general background model. Thus, each document model is estimated as the MLE of each term in the document PðtjDÞ,
linearly interpolated with a background language model PðtÞ, which in turn is calculated as the likelihood of observing t in a
sufficiently large corpus, such as the document collection (Jelinek & Mercer, 1980; Zhai & Lafferty, 2004):
PðtjhDÞ ¼ kDPðtjDÞ þ ð1� kDÞPðtÞ: ð8Þ
We address the parameter setting procedure for kD in Section 5.5. Now that we have described the main components of our
framework, we will zoom in on our proposed methods.
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4. Conceptual language models

Our goal is to utilize the knowledge that is encapsulated in a concept language to enhance the estimation of the query
model hQ . To this end, we use the concepts as a pivot language (Kraaij & de Jong, 2004) in a double translation, similar to
the method proposed by Berger and Lafferty (1999). Specifically, we utilize the concepts that are associated with a query
to find terms related to these concepts in order to estimate the expanded part of the query model, PðtjĥQ Þ. Fig. 1 shows a
graphical representation of the dependencies of this process.

Put differently, first we translate the query into a set of relevant concepts. Next, the vocabulary terms associated with the
concepts are considered as possible terms to include in the query model. More formally, for a query Q and concepts c 2 C:
PðtjĥQ Þ ¼
X
c2C

PðtjcÞPðcjQÞ; ð9Þ
where we assume that the probability of selecting a term is only dependent on the concept once we have selected that con-
cept for the query.

Two components need to be estimated: PðtjcÞ, to which we refer as a generative concept model, and PðcjQÞ, to which we
refer as a conceptual query model. As to the former, we will need to associate terms with concepts in the concept language.
While the concepts may be directly usable for retrieving documents (Hersh, Hickam, Haynes, & McKibbon, 1994; Srinivasan,
1996; Trieschnigg et al., 2009), we associate each concept with a weighed set of most characteristic terms using a multino-
mial unigram model. To this end we consider the documents that are annotated using c as bridges between the concept and
terms, by representing concepts as multinomial distributions over terms, PðtjcÞ. Generative concept models will be detailed
further in Section 4.2 below.

The second component—the conceptual query model PðcjQÞ—is a distribution over concepts specific to the query. In some
settings, concepts are provided with a query or as part of a query, see, e.g., the PubMed search interface (Herskovic, Tanaka,
Hersh, & Bernstam, 2007), some early TREC ad-hoc tracks (6–8 in particular), and the INEX Entity Ranking track where Wiki-
pedia categories are used (de Vries, Vercoustre, Thom, Craswell, & Lalmas, 2007). If this is not the case, however, we may
leverage the document annotations to approximate this step: this is what we do in the next section.

4.1. Conceptual query modeling

We now turn to defining PðcjQÞ, the conceptual query model. Contrary to the alternatives mentioned at the end of the
previous section, concepts are not provided with a query in a typical IR setting and need to be inferred, estimated, or recog-
nized (Wei, 2007; Zhou et al., 2007). In this paper, we formulate the estimation of concepts relevant to a query in a standard
language modeling manner, by determining which concepts are most likely given documents relevant to the query. Alter-
natively, we could involve the end user and ask which documents, associated concepts, or terms are relevant. Since we
do not have access to such assessments, however, we resort to using pseudo-relevance methods. In recent work we studied
different approaches of estimating a conceptual query model and concluded that using feedback documents is far more
effective than using, e.g., string matching methods that try to recognize concepts in the query (Trieschnigg et al., 2009).

Like Lavrenko and Croft (2001), we view the process of obtaining a conceptual query model as a sampling process from a
number of representative sources. The user has a notion of documents satisfying her information need, randomly selects one
of these, and samples a concept from its representation. Hence, the conceptual query model is defined as follows:
PðcjQÞ ¼
X

D2DQ

PðcjDÞPðDjQÞ: ð10Þ
Here, DQ is a set of pseudo-relevant documents returned by an initial retrieval run using the textual query. PðcjDÞ is the con-
cept language model of the document, the estimation of which is discussed in the next paragraph. Note that we assume that
the probability of observing a concept is independent of the query once we have selected a document given the query, i.e.,
PðcjD;QÞ ¼ PðcjDÞ. The term PðDjQÞ denotes the probability that document D is chosen from DQ given Q, which is obtained
using the retrieval scores.

We assume that pseudo-relevant documents are a good source from which we can sample the conceptual query model.
Indeed, manual inspection shows that they are annotated with many relevant concepts, but also that they contain a lot of
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Fig. 2. Per-topic breakdown of the improvement of conceptual language models over the query-likelihood baseline for all test collections, on various
evaluation measures and sorted in decreasing order. A positive value indicates an improvement over the baseline. The vertical labels indicate the topic
identifiers.
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noise: some concepts are very frequent for all documents and, despite being related to the query, not very informative. Sam-
pling from the maximum likelihood estimate for these documents would thus result in very general conceptual query
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models. Therefore, to re-estimate the probability mass of the concepts in the sampling process, we use a parsimonious lan-
guage model. Table 3 illustrates the difference between a maximum likelihood estimation and a parsimonious estimation. It
shows the concepts (in this case MeSH terms) with the highest probability for topic 186 from the TREC Genomics 2006 test
collection. The conceptual query model based on the parsimonious document models contains more specific—and thus more
useful—concepts, such as ‘‘Presenilin-1” and ‘‘Presenilin-2”. The model based on maximum likelihood estimates includes
more general concepts such as ‘‘Humans”, which are relevant but too general to be useful for searching. In the next section
we detail how re-estimation is performed.

4.2. Generative concept models

Given Eq. (9), our goal is to arrive at a probability distribution PðtjcÞ over vocabulary terms for each concept in the concept
language used for annotating the documents. We determine the level of association between a term and a concept by looking
at the way trained annotators have labeled the documents. In the end, this method defines the parameters of a generative
language model for each concept: a generative concept model. We determine the strength of association between a concept c
and a term t by determining the probability of observing t given c:
Table 3
A comp
Alzheim
algorith

PðcjD

Alzhe

Hum

Mem

Amy

Amy

Rese
PðtjcÞ ¼ Pðt; cÞ
PðcÞ : ð11Þ
Concepts that are used to annotate documents may have different characteristics from other parts of a document, such as
title and content. Annotations are selected by human indexers from a concept language while the remaining content consists
of free text. Since the terms that make up the document are ‘‘generated” using a different process than the concepts, we may
assume that t and c are independent and identical samples given a document D in (or with) which they occur. So, the prob-
ability of observing both t and c is
Pðt; cÞ ¼
X

D

PðDÞPðc; tjDÞ ¼
X

D2DC

PðDÞPðtjDÞPðcjDÞ; ð12Þ
where DC denotes the set of documents annotated with concept c. When we assume each document in this set to have a
uniform prior probability of being selected, we obtain
PðtjcÞ ¼ Pðt; cÞ
PðcÞ ¼

P
D2DC

PðDÞPðtjDÞPðcjDÞ
PðcÞ / 1

PðcÞ
X

D2DC

PðtjDÞPðcjDÞ: ð13Þ
Hence, it remains to define three terms: PðcÞ; PðtjDÞ, and PðcjDÞ. First, the term PðcÞ�1 functions as a penalty for frequently
occurring and thus relatively non-informative concepts. We estimate this term using MLE on the document collection:
PðcÞ ¼
P

Dnðc; DÞP
c0
P

D0nðc0;D
0Þ
; ð14Þ
where nðc; DÞ is the number of times document D is labeled with concept c.
Next we turn to PðxjDÞ, for x 2 ft; cg. The size of these models (in terms of the number of words or the number of concepts

that receive a non-zero probability) may be quite large, e.g., in the case of a large document collection or in the case of fre-
quently occurring concepts. Moreover, as exemplified above, not all of the observed events (where events are either terms or
concepts) are equally informative. Some may be common, whilst others may describe the general domain of the document.
Earlier, we have assumed that each document is a mixture of document-specific and more general terms (Section 3.2, Eq.
(8)); we now generalize this statement to also include concepts. Further, given this assumption, we may update each doc-
ument model by reducing the amount and probability mass of non-specific events. We do so by iteratively adjusting the indi-
vidual probabilities in each document, based on a comparison with a large reference corpus such as the collection. More
formally, we maximize the posterior probability of D after observing x:
PðDjxÞ ¼ kxPðxjDÞ
ð1� kxÞPðxÞ þ kxPðxjDÞ : ð15Þ
arison of the concepts with the highest probability PðcjQÞ (cf. Eq. (10)) for the TREC Genomics topic: ‘‘How do mutations in the Presenilin-1 gene affect
er’s disease”. The two columns show the difference between using MLE on the concepts associated with the documents to determine PðcjDÞ, or the EM
m given in Eq. (19). Unique concepts are marked in boldface.

Þ estimated using MLE PðcjDÞ estimated using Eq. (19)

imer disease Presenilin-1

ans Presenilin-2

brane proteins Alzheimer disease

loid beta-protein Amyloid precursor, protein secretases

loid beta-protein, precursor Membrane proteins

arch support, US Gov’t, P.H.S. Amyloid beta-protein, precursor
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Note that kx may be set differently for D (Eq. (8)) and C. For these estimations, we fix kC ¼ kD ¼ 0:15 (Hiemstra et al., 2004;
Meij & de Rijke, 2008; Meij et al., 2008). We then apply the following EM algorithm until the estimates do not change sig-
nificantly anymore:
Table 4
Top 10
resurge

PðtjD

0.06
0.05
0.04
0.03
0.02
0.02
0.02
0.02
0.01
0.01
E-step : ex ¼ PðDjxÞ ¼ kCPðxjDÞ
ð1� kCÞPðxÞ þ kCPðxjDÞ ; ð16Þ

M-step : PCðxjDÞ ¼
nðx; DÞexP
x0nðx0; DÞex0

: ð17Þ
This updating mechanism enables more specific events, i.e., events that are not well-explained by the background model, to
receive more probability mass, making the resulting document model more specific. After the EM algorithm has converged,
we remove those events with a probability lower than a certain threshold d. Thus, the resulting document model for terms,
PðtjĥDÞ, to be used in Eq. (13) is given by:
PðtjĥDÞ ¼
ZDt � PCðtjDÞ if t 2 D and PCðtjDÞ > dt

0 otherwise;

�
ð18Þ
where ZDt is a document-specific normalization factor: ZDt ¼ 1=
P

tPCðtjDÞ. Table 4 provides an example of the effects of
applying this algorithm on a document from the CLEF document collection (that will be introduced in Section 5). Similarly,
the resulting document model for concepts, PðcjĥDÞ, to be used for PðcjDÞ in Eq. (13), is given by:
PðcjĥDÞ ¼
ZDc � PCðcjDÞ if c 2 D and PCðcjDÞ > dc

0 otherwise;

�
ð19Þ
where ZDc is a document-specific normalization factor: ZDc ¼ 1=
P

cPCðcjDÞ. Table 3 provides an example of the effects of
applying this algorithm on a topic from the TREC document collection (that will be introduced in Section 5). For the exper-
iments in this paper we fix dt ¼ dc ¼ 0:01.

5. Experimental setup

To answer the research questions specified in the introduction, we set up a number of experiments in which we compare
our conceptual language models with other retrieval approaches. Below, we first describe our test collections, the baseline
approaches that we use for comparison, our experimental environment, estimation methods, and the method we use for sig-
nificance testing. In Section 6, we turn to the results of our experiments.

5.1. Test collections

The test collections we employ were selected for several reasons. First, our retrieval model requires collections in which
the documents have been manually annotated with an appropriate concept language. The TREC and CLEF test collections that
we describe below both satisfy this requirement. Moreover, they have been used for evaluating well-defined IR tasks and
have relevance assessments based on a sufficiently large pool. Tables 5 and 6 list key characteristics of the test collections
we use. All documents (in all test collections) are stemmed using a Porter Stemmer and we do not remove stopwords.

5.1.1. CLEF domain specific 2007–2008
The CLEF domain-specific track evaluates retrieval on structured scientific documents, using bibliographic databases

from the social sciences domain as document collections (Petras, Baerisch, & Stempfhuber, 2007; Petras & Baerisch,
2008). The track emphasizes leveraging the structure of data in collections (defined by concept languages) to improve
retrieval performance. The 2007 (CLEF-DS-07) and 2008 (CLEF-DS-08) tracks use the combined German Indexing and
stemmed terms for the document model belonging to document CSASA-1-EN-9706464 (entitled ‘‘American indian ethnic renewal: red power and the
nce of identity and culture.”) from the CLEF collection.

Þ Estimated using MLE PðtjDÞ Estimated using Eq. (18)

1 The 0.54 Indian

4 Of 0.46 Ethnic

5 Indian

8 Ethnic

8 In

8 American

1 A

1 Renew

9 Cultur

7 Ident



Table 5
Statistics of the document collections used in this paper. ‘‘Avg.” indicates the average number of terms or concepts in a document, ‘‘Std. dev.” the standard
deviation, and ‘‘Med.” the median. The CLEF-DS collection is the smallest in size, whereas the TREC Genomics 2004 collection has the smallest documents on
average. Documents in the TREC Genomics 2006 collection have the most concepts assigned per document.

Documents Size Terms Concepts

Avg. Std. dev. Med. Avg. Std. dev. Med.

CLEF-DS-07 171,319 232 MB 62.3 42.3 51 10.1 4.2 10
CLEF-DS-08

TREC-GEN-04 4,591,008 20 GB 174.4 113.6 171 11.4 5.1 11
TREC-GEN-05

TREC-GEN-06 162,169 12 GB 4160.3 2750.2 4525 15.1 6.1 15

Table 6
Statistics of the topic sets used in this paper. The TREC Genomics 2004 (TREC-GEN-2004) topics are the longest queries, whereas the CLEF-DS-08 has the
shortest. The CLEF-DS-07 topics retrieve the most relevant documents on average.

Topics Queries Relevant documents

With rel. docs Avg. length Std. dev. length Total Avg. Min. Max.

CLEF-DS-07 25 25 4 1.6 4530 181 18 497
CLEF-DS-08 25 25 3 1.7 2133 85 4 206

TREC-GEN-04 50 50 7 4.7 8268 165 1 697
TREC-GEN-05 50 49 5 2.5 4584 93 2 709

TREC-GEN-06 28 26 4 2 1449 55 2 234
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Retrieval Testdatabase (GIRT) and Cambridge Scientific Abstracts (CSA) databases as their document collection. The GIRT
database contains extracts from two databases maintained by the German Social Science Information Centre from the
years 1990–2000. The English GIRT collection is a pseudo-parallel corpus to the German GIRT collection, providing trans-
lated versions of the German documents (17% of these documents contain an abstract). For the 2007 domain-specific track,
an extract from CSA’s Sociological abstracts was added, covering the years 1994, 1995, and 1996. Besides the title and ab-
stract, each CSA record also contains subject-describing keywords from the CSA Thesaurus of Sociological Indexing Terms
and classification codes from the Sociological Abstracts classification. In this sub-collection, 94% of the records contains an
abstract.

We only use the English mono-lingual topics and relevance assessments, which amounts to a total of 50 test topics. The
documents in the collection contain three separate fields with concepts, CLASSIFICATION-TEXT-EN, CONTROLLED-TERM-
EN and CONTROLLED-TERM-EN-MINOR; we only use the CLASSIFICATION-TEXT-EN annotations for the documents.

5.1.2. TREC Genomics 2004–2005
The document collection for the TREC 2004 and 2005 Genomics ad-hoc search task (TREC-GEN-04 and TREC-GEN-05)

consists of a subset of the MEDLINE database (Hersh et al., 2005, 2006). MEDLINE is the bibliographic database maintained
by the US National Library of Medicine (NLM). It currently contains over 16 million biomedical citations from around 5200
journals and several hundred thousand records are added each year. Despite the growing availability of full-text articles on
the Web, MEDLINE remains a central access point for biomedical literature. Each Medline record contains free text fields
(such as title and abstract), a number of fields containing other metadata (such as publication date and journal), and, most
important for our current work, terms from the Medical Subject Headings (MeSH) thesaurus. We only use the main descrip-
tors, without qualifiers. MeSH terms are manually assigned to citations by trained annotators from the NLM. The over 20,000
biomedical concepts in the MeSH thesaurus are organized hierarchically. Relationships between concepts in the MeSH the-
saurus are primarily of the ‘‘broader/narrower than” type. The ‘‘narrower than” relationship is close to expressing hypern-
ymy (is a), but can also include meronymy (part of) relations. One concept is narrower than another if the documents it
is assigned to are contained in the set of documents assigned to the broader term. Each MEDLINE record is annotated with
10–12 MeSH terms on average.

It should be noted that the Medical Subject Headings thesaurus is not the most appropriate for Genomics information
retrieval, since it covers general biomedical concepts rather than the specific genomics terminology used in the TREC topics
(Stokes, Li, Cavedon, & Zobel, 2009). Despite this limited coverage, the thesaurus can still be used to improve retrieval effec-
tiveness, as we will show later.

The document collection for TREC Genomics 2004 and 2005 contains 10 years of citations covering 1993–2004, which
amounts to a total of 4,591,008 documents. All documents have a title, 75.8% contain an abstract and 99% are annotated with
MeSH terms. For the 2004 track, 50 test topics are available, with an average length of seven terms, cf. Table 6. The 50 topics
for 2005 (one of which has no relevant documents) follow pre-defined templates, so-called Generic Topic Types. An example



Table 7
Free parameters in the models described in the previous sections.

Parameter Description

kQ Eq. (7) Interpolation between initial query and expanded query part
jDQ j Eqs. (5) and (10) The size of the set of pseudo-relevant documents
jVQ j Eqs. (5) and (13) The number of terms to use, either for the expanded query part (Eq. (5)) or for each concept (Eq. (13))
jCj Eq. (9) The number of concepts to use for the conceptual query representation

E. Meij et al. / Information Processing and Management 46 (2010) 448–469 459
of such a template is: ‘‘Find articles describing the role of [gene] in [disease]”, where the topics instantiate the bold-faced
terms. The topics in our experiments are derived from the original topic by only selecting the instantiated terms and discard-
ing the remainder of the template.

5.1.3. TREC genomics 2006
The TREC 2006 Genomics track introduced a full-text document collection, replacing the bibliographical abstracts from

the previous years (Hersh, Cohen, Roberts, & Rekapalli, 1994). The documents in the collection are full-text versions of sci-
entific journal papers. The files themselves are provided as HTML, including all the journal-specific formatting. Most of the
documents (99%) have a valid Pubmed identifier, through which the accompanying MEDLINE record can be retrieved. We use
the MeSH terms assigned to the corresponding citation as the annotations of the full-text document.

The 2006 test topics are again based on topic templates and instantiated with specific genes, diseases or biological pro-
cesses. Thus, we preprocess them in a similar fashion as the topics for the TREC Genomics 2005 track, by removing all the
template-specific terms. This test collection has 28 topics, of which two do not have any relevant documents in the collec-
tion. The task put forward for this test collection is to first identify relevant documents and then extract the most relevant
passage(s) from each document; relevance is measured at the document, passage, and aspect level. We do not perform any
passage extraction and only use the judgments at the document level.2

5.2. Evaluation measures and significance testing

We report on the following evaluation measures, which are obtained with the trec_eval3 program: mean average precision
(MAP), recall, and early precision (at 5 and 10 retrieved documents). For significance testing, we use a Wilcoxon signed rank test
and look for improvements at the a < 0:05 level. We use a bold-faced font to indicate the best performing model in our result
tables.

5.3. Parameter estimation

Given the models introduced in the previous sections, we have a number of parameters to estimate. Table 7 summarizes
the parameters that we need to set.

There are various approaches that may be used to estimate these parameters. We choose to optimize the parameter val-
ues by determining the mean average precision for each set of parameters and show the results of the best performing set-
tings. For kQ we sweep in the interval [0,1] with increments of 0.1. The other parameters are investigated in the range [1,10]
with increments of 1. We determine the MAP scores on the same topics that we present results for, similar to Liu and Croft
(2004), Metzler and Croft (2005), Mitra et al. (1998), Lafferty et al. (2001) and Zhai and Lafferty (2004). While computation-
ally expensive (exponential in the number of parameters), it does provide us with an upper bound on the retrieval perfor-
mance that one might achieve using the described models.

5.4. Complexity and implementation

For all our experiments we use the Lemur Toolkit.4 As to the complexity of our methods, we need to calculate two terms
additional to the standard language modeling estimations (Lafferty et al., 2001): the generative concept models (offline) and the
conceptual query model (online). The former is most time-consuming, with a maximum complexity per concept proportional to
the number of terms in the vocabulary, the number of documents annotated with the concept, and the number of EM iterations.
The advantage of this step, however, is that it can be performed offline. Determining a conceptual query model is, in terms of
efficiency, comparable to standard pseudo-relevance feedback approaches except for the addition of the number of EM itera-
tions. In general, the additional overhead of the online calculations scales well and its performance is acceptable for all test
collections.
2 2007 was the final year of the TREC Genomics track and used the same document collection as 2006. However, in this edition a new task was introduced
and because of the different nature of that task, we do not perform experiments using those topics.

3 trec_eval is available from the TREC web site for registered participants at http://www.trec.nist.gov.
4 See http://www.sourceforge.net/projects/lemur/.

http://www.trec.nist.gov
http://www.sourceforge.net/projects/lemur/
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5.5. Baselines

We use two baseline retrieval approaches for comparison purposes, viz. query likelihood and relevance models, which are
described next. Table 8 shows an example of the generated query models for these baseline approaches and the CLEF 2008
query ‘‘Shrinking cities”. As our first baseline, we employ a run based on the KL-divergence retrieval method and set kQ ¼ 1
(cf. Section 3, Eq. (7)). This uses only the information from the initial, textual query and amounts to performing retrieval
using query likelihood.

It has been shown that making the document interpolation parameter kD (cf. Eq. (8)) dependent on the document length
yields superior performance (Zhai & Lafferty, 2004). Thus, for our baseline experiments we set kD ¼ l

jDjþl and 1� kDð Þ ¼ jDj
jDjþl,

where l is a hyperparameter that we set to the average document length (for each individual test collection). Effectively, this
results in Bayesian smoothing using a Dirichlet prior (Chen & Goodman, 1996). All the results on which we report use this
baseline as their initially retrieved document set.

Since our concept language models also rely on pseudo-relevance feedback (PRF), we use the text-based PRF method
introduced by Lavrenko and Croft (2001) (‘‘model 2”) which was described in Section 3, Eq. (5) as another baseline. The func-
tional form of our conceptual query model is reminiscent of Lavrenko and Croft’s (2001) ‘‘model 1” and we also evaluated
‘‘model 1” as a text-based pseudo-relevance feedback baseline. We found that its performance was inferior to ‘‘model 2”
on all test collections—a finding in line with results obtained by Lavrenko and Croft (2001) as well as other researchers (Bal-
og, 2008). Consequently, we use ‘‘model 2” in our experiments and refrain from mentioning the results of ‘‘model 1”.

6. Results and discussion

Now that we have detailed our conceptual language modeling approach (Section 4) and laid out the experimental envi-
ronment (Section 5), we present the results of the experiments aimed at answering the research questions listed in the intro-
duction. First, we look at the performance of the query likelihood model, which we use as our baseline. We emphasize that
all the other models that we evaluate use the initial ranking from the query likelihood model as a set of pseudo-relevant
documents. Whether improving upon this baseline will also improve the estimations based on it is a question for future
work. We then look at the results of applying an established pseudo-relevance feedback algorithm based on relevance mod-
els. Next, we evaluate the results of using the conceptual language models as described in Section 4, using the conceptual
query models and the generative concept models in conjunction.

We then perform an ablation study, by zooming in on the results after removing each component in the conceptual lan-
guage models. First, we consider the generative concept models that we use to translate the conceptual query model to free-
text terms. We look at the results of using MLE, i.e., without applying the EM algorithm described in Section 4.2. Second,
since each document in our collections has associated concepts, we may use the conceptual query model in conjunction with
the initial query for retrieval, as detailed in Section 6.2.3. Finally, we look at the sensitivity of our model with respect to the
individual parameter settings and zoom out in order to see whether we can relate collection-specific properties with the re-
ported results.

6.1. Baselines

Table 9 shows the results of the query likelihood model as well as the relevance model—which were introduced in Section
3.1—on the five test collections.

6.1.1. Query likelihood
This model (abbreviated by QL) uses MLE on the initial query to build a query model, by distributing the probability mass

evenly among the terms in the topic, cf. Eq. 3. First, we note that the results obtained for the query likelihood model are com-
parable to or better than the mean results of all the participating groups in the respective TREC Genomics (Hersh et al., 1994,
2005, 2006) and CLEF domain specific tracks (Petras et al., 2007; Petras & Baerisch, 2008). As to the TREC Genomics test
Table 8
Concepts or stemmed terms with the highest probability in the query models for the CLEF domain specific topic ‘‘Shrinking cities” generated by the query-
likelihood baseline (QL; Eq. (3)), relevance models (RM; Eq. (5)), conceptual query model (EC; Eq. (10)), and the conceptual language models (GC; Eq. 9).

QL RM EC GC

0.5000 Citi 0.2718 Citi 0.2500 urban sociology 0.2161 Citi
0.5000 Shrink 0.2500 Shrink 0.2500 urban planning 0.2000 Shrink

0.0241 Of 0.2500 town planning 0.1642 Urban
0.0235 Develop 0.2500 town development 0.0899 Town
0.0152 Popul 0.0890 Develop
0.0136 Town 0.0831 Plan
0.0099 Economi 0.0466 Hous
0.0094 Sociolog 0.0402 Sociolog



Table 9
Results of the baselines: query likelihood (QL) and the best performing run using relevance models, method 2 (RM). The right-most column indicates the
relative difference between the query likelihood and relevance model scores.

QL RM

CLEF-DS-07 RelRet/TotalRel 2289/4530 2430/4530 +6.2%
P5 0.5120 0.5440 +6.2%
P10 0.5080 0.5040 �0.8%
MAP 0.1952 0.2061 +5.6%

CLEF-DS-08 RelRet/TotalRel 1468/2133 1473/2133 +0.3%
P5 0.5280 0.5680 +7.6%
P10 0.4680 0.4800 +2.6%
MAP 0.2819 0.2856 +1.3%

TREC-GEN-04 RelRet/TotalRel 3847/8268 4205/8268 +9.3%*

P5 0.5160 0.5680 +10.1%
P10 0.4800 0.5340 +11.2%*

MAP 0.2856 0.3306 +15.8%*

TREC-GEN-05 RelRet/TotalRel 2825/4584 3031/4584 +7.3%*

P5 0.4122 0.4163 +1.0%
P10 0.3776 0.3857 +2.1%
MAP 0.2153 0.2368 +10.0%

TREC-GEN-06 RelRet/TotalRel 1078/1449 1160/1449 +7.6%
P5 0.4154 0.4308 +3.7%
P10 0.4154 0.4346 +4.6%
MAP 0.2731 0.2993 +9.6%*
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collections, we do not perform any of the elaborate and knowledge-intensive preprocessing of the queries and/or documents
that is common in this domain (Trieschnigg, Kraaij, & de Jong, 2007). Even without applying such explicit domain-specific
knowledge, our baseline outperforms many systems that do.

6.1.2. Relevance models
The runs based on relevance models (abbreviated by RM) use the retrieved documents from the query likelihood run to

construct an improved query model which is subsequently used for retrieval. The optimal parameter settings for the rele-
vance model, with which we obtain these results are determined in the same fashion as for our conceptual language models,
i.e., we sweep over all possible values for kQ (cf. Eq. (7)) and try varying numbers of documents and terms to find the optimal
performance in terms of MAP.

Table 9 shows the results of the baseline QL model and the RM model. We observe that, on the CLEF collections, the
RM runs show improvements over the baseline in terms of mean average precision (+6% and +1% for the 2007 and 2008
collection, respectively), average recall (+6% and +0.3%) and early precision (P@5: +6%, +8%). None of these differences is
significant, however. Results on the individual CLEF-DS-07 topics show that three of the topics substantially increase
average precision (a difference of more than 0.05), whereas only one topic decreases. The number of CLEF-DS-08 topics
which improve in terms of average precision is about the same as the number which are hurt, causing the modest
improvement.

The RM runs on the TREC Genomics collections do show significant differences compared to the QL baseline. For the 2004
query set, average precision (+17%), recall (+9%) and early precision (P@10: +12%) increase significantly. TREC-GEN-06 shows
a larger significant improvement on mean average precision (10%). Recall and precision show improvements although they
are not significant. Similar to the CLEF collections, TREC-GEN-05 shows a positive difference on average but, besides recall,
none of the changes are significant. The increase in mean average precision on the TREC 2005 topics can be mainly attributed
to a single topic which strongly benefits from using relevance models.

These findings regarding pseudo-relevance feedback using relevance models, i.e., where some topics are helped and some
topics are hurt, are often found when applying pseudo-relevance feedback.

6.2. Conceptual language models

We now turn to the results of the conceptual language model presented in Section 4. Recall that this model consists of
three steps. First, each query is mapped onto a conceptual query model, i.e., a distribution over concepts relevant to the
query using Eq. (10). The concepts found are then translated back to terms using Eq. (13) in conjunction with the EM algo-
rithm from Eq. (16).

In the first subsection, we discuss the results of applying all the steps in our conceptual language model (GC; Section 4).
Then, in the following sections, we will perform an ablation study and discuss the results of not applying the EM algorithm
(MLGC; Section 6.2.2) and not translating the found concepts using generative concept models (EC; Section 6.2.3). Example
query models for GC and EC can be found in Table 8 for the CLEF topic ‘‘Shrinking cities”.
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6.2.1. Results
In this section we present the results of using every step of the conceptual language model (abbreviated GC) we detailed

in Section 4. Table 10 lists the results of the concept language models. The results for the two CLEF collections show that the
GC model can result in a significant improvement in recall over the query likelihood approach: 13% and 9% more relevant
documents are returned for CLEF-DS-07 and CLEF-DS-08, respectively. Fig. 3 shows the precision–recall graphs for our con-
ceptual language model, versus the query-likelihood baseline and relevance models. The precision–recall curve of the CLEF-
DS-07 query set shows improved precision over almost the whole recall range. The CLEF-DS-08 runs shows improved pre-
cision between recall levels 0.7 and 0.8, making up for the loss of initial precision. Overall, both CLEF test collections show
improvements in mean average precision (19% and 6%, respectively), but only the results on CLEF-DS-07 are significantly dif-
ferent. We note that the RM approach was unable to achieve a significant difference against the query-likelihood baseline on
these test collections and measures.

The three TREC Genomics test collections show a less consistent behavior. In terms of mean average precision, the TREC-
GEN-04 and TREC-GEN-06 collections show significant improvements in favor of the GC model (+6.6% and +15.4% respec-
tively). The TREC-GEN-05 topics also show substantial improvements between the query likelihood and GC model, although
these changes are not significant. Fig. 2 shows a per-topic analysis of the difference of the GC model with respect to the QL
baseline; a positive value in these graphs indicates the GC model outperformed the QL baseline. For TREC-GEN-05, it shows
that half of the topics benefit from applying the GC model and the other half is actually hurt. This is what causes the differ-
ence to be non-significant. The overall increase in average precision measured over al the topics, however, is larger than its
loss.

From a further look on the per-topic plots, we can observe that, in terms of MAP, more topics are helped than hurt for all
the other test collections. The early precision plots show a less clear picture. The ratio between the number of topics that
improve precision@5 (P5) versus topics that worsen is about 1.5, averaged over all test collections. The average number
of topics which precision@10 (P10) scores increase is about the same as the number of topics for which it decreases.

A more in-depth analysis of the terms that are introduced provides more insight into when and where the GC model im-
proves or hurts retrieval. We observe that when the initial textual query is not specific, the resulting set of feedback docu-
ments is unfocused. Hence, fairly general and uninformative words are added to the query model and it fails to achieve
higher retrieval performance. Another reason for poor performance is that particular aspects in the original query are over-
emphasized in the updated query model, resulting in query drift. For example, the CLEF-DS-08 topic 210 entitled ‘‘Establish-
ment of new businesses after the reunification” results in expansion terms related to the aspect ‘‘Establishment of new
businesses”, such as ‘‘entrepreneur” and ‘‘entrepreneurship”, but fails to include words related to the ‘‘reunification” aspect.
When the updated query model is a balanced expansion of the original query, i.e., when it does include expansion terms for
all aspects of the query, the GC model show improved results.

Overall, we see that our conceptual language model mainly has a recall enhancing effect, indicated by the significant in-
creases in MAP for the CLEF-DS-07 and TREC-GEN-06 test collections and the significant increases in recall on both CLEF to-
pic sets.

Table 11 shows a comparison between the GC and the RM model. When comparing these results, we find significant
improvements in terms of recall on the CLEF test collections. On the TREC-GEN-04 and TREC-GEN-06 topic set we find a
Table 10
Results of the baseline (QL) and the conceptual language model (GC).

QL GC

CLEF-DS-07 RelRet/TotalRel 2289/4530 2596/4530 +13.4%*

P5 0.5120 0.5520 +7.8%
P10 0.5080 0.4920 �3.1%
MAP 0.1952 0.2315 +18.6%*

CLEF-DS-08 RelRet/TotalRel 1468/2133 1602/2133 +9.1%*

P5 0.5280 0.4880 �7.6%
P10 0.4680 0.4840 +3.4%
MAP 0.2819 0.2991 +6.1%

TREC-GEN-04 RelRet/TotalRel 3847/8268 4022/8268 +4.5%
P5 0.5160 0.5560 +7.8%
P10 0.4800 0.5000 +4.2%
MAP 0.2856 0.3045 +6.6%*

TREC-GEN-05 RelRet/TotalRel 2825/4584 3330/4584 +17.9%
P5 0.4122 0.4245 +3.0%
P10 0.3776 0.3776 0.0%
MAP 0.2153 0.2338 +8.6%

TREC-GEN-06 RelRet/TotalRel 1078/1449 1244/1449 +15.4%
P5 0.4154 0.4538 +9.2%
P10 0.4154 0.4077 �1.9%
MAP 0.2731 0.3182 +16.5%*



Table 11
Results of the relevance model (RM) versus conceptual language models (GC).

RM GC

CLEF-DS-07 RelRet/TotalRel 2430/4530 2596/4530 +6.8%*

P5 0.5440 0.5520 +1.5%
P10 0.5040 0.4920 �2.4%
MAP 0.2061 0.2315 +12.3%

CLEF-DS-08 RelRet/TotalRel 1473/2133 1602/2133 +8.8%*

P5 0.5680 0.4880 �14.1%
P10 0.4800 0.4840 +0.8%
MAP 0.2856 0.2991 +4.7%

TREC-GEN-04 RelRet/TotalRel 4205/8268 4022/8268 �4.4%
P5 0.5680 0.5560 �2.1%
P10 0.5340 0.5000 �6.4%*

MAP 0.3306 0.3045 �7.9%*

TREC-GEN-05 RelRet/TotalRel 3031/4584 3330/4584 +9.9%
P5 0.4163 0.4245 +2.0%
P10 0.3857 0.3776 �2.1%
MAP 0.2368 0.2338 �1.3%

TREC-GEN-06 RelRet/TotalRel 1160/1449 1244/1449 +7.2%
P5 0.4308 0.4538 +5.3%
P10 0.4346 0.4077 �6.2%
MAP 0.2993 0.3182 +6.3%*
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significant improvement in terms of MAP. The results on the TREC Genomics 2004 and 2005 topic sets indicate that the GC
model performs comparably (TREC-GEN-05) or slightly worse (TREC-GEN-04). We believe the latter result is caused by the
fixed setting of dt in Eq. (18) in conjunction with the rather small average document length and the large number of docu-
ments in this particular document collection.

Unlike the relevance model, the GC model provides a weighted set of concepts in the form of a conceptual query model.
Besides the possibility of suggesting these to the user, we hypothesize that the results of applying the remaining steps in our
conceptual language models after a user has selected the concepts most relevant to his query would improve retrieval effec-
tiveness. Since we do not have relevant concepts for our current topics, we consider the verification of this hypothesis a topic
for future work.

In the following sections, we look at the results of not using the EM algorithm in the generative concept models and di-
rectly using the conceptual query models for retrieval.

6.2.2. Maximum likelihood-based generative concept models
In this section, we investigate the added value of using the EM algorithm described in 4.2, by comparing a maximum like-

lihood based GC model (named MLGC) to the GC model shown in the previous section. Table 12 shows the results of this
Table 12
Results of the conceptual language models in conjunction with the EM algorithm (GC) described in Section 4 versus without (MLGC).

MLGC GC

CLEF-DS-07 RelRet/TotalRel 2596/4530 2596/4530 0.0%
P5 0.5520 0.5520 0.0%
P10 0.4760 0.4920 +3.4%
MAP 0.2311 0.2315 +0.2%

CLEF-DS-08 RelRet/TotalRel 1566/2133 1602/2133 +2.3%*

P5 0.5120 0.4880 �4.7%
P10 0.4960 0.4840 �2.4%
MAP 0.2853 0.2991 +4.8%

TREC-GEN-04 RelRet/TotalRel 3973/8268 4022/8268 +1.2%
P5 0.5360 0.5560 +3.7%
P10 0.4960 0.5000 +0.8%
MAP 0.2989 0.3045 +1.9%

TREC-GEN-05 RelRet/TotalRel 2887/4584 3330/4584 +15.3%
P5 0.4163 0.4245 +2.0%
P10 0.3571 0.3776 +5.7%
MAP 0.2174 0.2338 +7.5%

TREC-GEN-06 RelRet/TotalRel 1118/1449 1244/1449 +11.3%
P5 0.4231 0.4538 +7.3%
P10 0.4192 0.4077 �2.7%
MAP 0.2863 0.3182 +11.1%



Table 13
Results of the conceptual language models (GC) versus using the found concepts directly (EC).

EC GC

CLEF-DS-07 RelRet/TotalRel 2448/4530 2596/4530 +6.0%
P5 0.5040 0.5520 +9.5%
P10 0.5080 0.4920 �3.1%
MAP 0.2104 0.2315 +10.0%

CLEF-DS-08 RelRet/TotalRel 1485/2133 1602/2133 +7.9%*

P5 0.5120 0.4880 �4.7%
P10 0.4880 0.4840 �0.8%
MAP 0.2894 0.2991 +3.4%

TREC-GEN-04 RelRet/TotalRel 4221/8268 4022/8268 �4.7%
P5 0.5480 0.5560 +1.5%
P10 0.5240 0.5000 �4.6%
MAP 0.3146 0.3045 �3.2%

TREC-GEN-05 RelRet/TotalRel 2916/4584 3330/4584 +14.2%
P5 0.4082 0.4245 +4.0%
P10 0.3776 0.3776 0.0%
MAP 0.2295 0.2338 +1.9%

TREC-GEN-06 RelRet/TotalRel 1171/1449 1244/1449 +6.2%
P5 0.4231 0.4538 +7.3%
P10 0.4000 0.4077 +1.9%
MAP 0.2927 0.3182 +8.7%
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method. We observe that applying the EM algorithm improves overall retrieval effectiveness compared to the MLGC model,
although not significantly, and only in terms of recall and MAP. Only the number of relevant retrieved documents for the
CLEF-DS-08 significantly improves when using the EM algorithm.

The topics that are helped most by the application of the EM algorithm—in terms of an absolute gain in MAP—include
TREC-GEN-05 topic 146: ‘‘Provide information about Mutations of presenilin-1 gene and its/their biological impact in Alz-
heimer’s disease” (increased MAP by 0.51) and TREC-GEN-06 topic 160 ‘‘What is the role of PrnP in mad cow disease?” (in-
creased MAP by 0.52). A closer look at the intermediate results for these topics reveals two things. In the first topic, the GC
model introduces the term ‘‘PRP”, which is a synonym for ‘‘PrnP”. The second topic shows that the GC model introduces three
new terms which do not seem directly relevant to the query, but are able to boost MAP substantially.

Besides having the potential of improving certain topics automatically we believe that, similar to our observation with
regard to the GC model, the biggest improvements may be realized when a user selects the most relevant concepts. Future
work should indicate if this is a valid assumption. Moreover, when one considers presenting the found concepts and/or terms
to the user, the EM algorithm does provide a transparent function that helps filtering non-content-bearing terms and
concepts.

6.2.3. Explicit conceptual query models
In Section 4.1 we introduced a method for acquiring a weighted set of concepts for a query, by translating a textual query

to a conceptual representation. In this section, we evaluate the results of using the conceptual query model (abbreviated EC)
directly, i.e., using it in combination with the original textual representation to estimate the relevance of a document. Since
all the documents in our current test collections have two representations (terms and concepts), we can use both disjunc-
tively for retrieval. So, instead of interpolating the query model and using the result for retrieval, we interpolate the scores of
each individual component as follows5:
5 KL-
Score ðQ ; DÞ ¼ ð1� kQ Þ � �KLð~hQkhDÞ þ kQ � �KLðhCkhDÞ: ð20Þ
Here, the first term is the regular query-likelihood score. The second term is the score obtained from matching the concep-
tual query model with the conceptual representation of each document:
�KLðhCkhDÞ ¼ �
X

c

PðcjhCÞ log
PðcjhCÞ
PðcjhDÞ

/ �
X

c

PðcjhCÞ log PðcjhDÞ; ð21Þ
where PðcjhCÞ ¼ PðcjQÞ (Eq. (10) q.v.). In effect, this drops the dependence between t and c (see Fig. 1) and considers the con-
cepts as regular indexing terms.

Thus, the EC model uses an explicit conceptual representation in combination with the textual representation for search-
ing documents and, similar to the approaches described in the previous sections, the EC approach uses the same feedback
documents for improving the query. However, instead of sampling terms from these documents, we now use their associated
concepts.
divergence is a linear model and as such invariant under scaling.
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Fig. 3. Precision–recall plots for all evaluated test collections.

E. Meij et al. / Information Processing and Management 46 (2010) 448–469 465
When we look at the results as compared to the GC model as depicted in Table 13, we find marginal differences. Only
recall on the CLEF-DS-08 topic set is significantly different from the run based on conceptual language models. In comparison
to the query-likelihood baseline (cf. Tables 9 and 13), the EC model shows similar improvements as the relevance models.
The runs on the CLEF collections show small improvements in mean average precision, recall and initial precision. When
tested, these differences are not statistically significant The EC model, when applied to the TREC Genomics collections, shows
significant improvements for the 2004 and 2006 collection with respect to the QL baseline.

Before turning to the answers to our research questions based on the results in this section, we present a brief analysis of
the parameter sensitivity of our conceptual language model.

6.3. Parameter sensitivity analysis

Both our conceptual language model and the relevance model have a number of parameters that need to be set, as intro-
duced in Section 5.3. In this section we describe the optimal settings for each model and explore the sensitivity of the results.
Similar to related work (Eguchi & Croft, 2006; Zhai & Lafferty, 2001), we did not evaluate jDQ j; jVQ j > 10. Even given this
restriction, the obtained results are clear improvements and further improvements may be obtained with a larger set of
terms or documents.

Table 14 lists the optimal parameter settings for the relevance model per test collection. We observe that the setting of kQ

for this model is roughly dependent on the document collection. Table 15 lists the optimal parameter values for the concep-
tual language model. Again we observe that the optimal value for kQ is dependent on the document collection. We zoom in
Table 14
Free parameters in the relevance model described in Section 3.1. See Table 7 for a description of each parameter.

kQ jDQ j jVQ j

CLEF-DS-07 0.5 7 8
CLEF-DS-08 0.7 10 7

TREC-GEN-04 0.5 7 10
TREC-GEN-05 0.5 3 6

TREC-GEN-06 0.4 4 10



Table 15
Free parameters for the conceptual language models. See Table 7 for a description of each parameter.

jCj kQ jDQ j jVQ j

CLEF-DS-07 8 0.3 7 4
CLEF-DS-08 4 0.3 3 5

TREC-GEN-04 9 0.1 10 10
TREC-GEN-05 10 0.1 9 5

TREC-GEN-06 3 0.4 6 2
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Fig. 4. Results of varying kQ on retrieval effectiveness on all test collections.
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on the sensitivity of the results of the conceptual language model towards the setting of kQ , by displaying the effect of vary-
ing kQ on MAP (Fig. 4a) and precision@5 (Fig. 4b). We observe that the curves follow a similar pattern for the CLEF document
collection and for both measures, with both maxima lying around kQ ¼ 0:3. The TREC-GEN-04 and TREC-GEN-05 topics—
which both use the TREC 2004 document collection—follow a less similar pattern, although their maximum MAP scores have
a similar corresponding kQ value. The TREC-GEN-06 and the CLEF-DS-2007 topics show the largest relative improvement
(both nearly 20% improvement over the query likelihood in terms of MAP, i.e., when kQ ¼ 0). We also observe that selecting
the best value for kQ based on the highest MAP scores does not necessarily lead to the highest score in terms of early pre-
cision. Interestingly, the TREC-GEN-06 topics reach roughly the same precision@5 scores for the query likelihood model as
when we would only use the terms suggested by the conceptual language model.

7. Conclusion

We have proposed and investigated conceptual language models for domain-specific document retrieval. The goal of con-
ceptual language models is to leverage document-level concept annotations for improving full-text retrieval. In our method,
the original textual query is translated to a conceptual query model and, by means of generative concept models this conceptual
query model is used to update the original, textual query model. The motivation behind this dual translation is that an ex-
plicit conceptual representation of the information need can be used to derive related terms which are less dependent on the
original query text. In both translation steps we have applied an EM algorithm to improve model estimation. Using an exten-
sive set of experiments on five test collections from two domains, we have shown that conceptual language models can im-
prove text-based retrieval, both with and without conventional pseudo-relevance feedback.

We now turn to answering the research questions posed in the introduction. First, we compared conceptual language
models to a query-likelihood baseline and a model incorporating pseudo-relevance feedback. When evaluated on five test
collections from two domains, we find that the conceptual language models yield significant improvements over a query-
likelihood baseline on all the evaluated measures. In particular we have observed a significant improvement in terms of
recall on all collections, which is in line with results obtained from relevance feedback methods in general. On the TREC col-
lections, however, we have also observed a significant increase in early precision. As such, our method is both a recall and a
precision-enhancing device.

When compared to relevance models and using the same pseudo-relevant documents, conceptual language models show
a significant improvement in terms of MAP on two test collections, as well as a significant increase in recall on two other test
collections. On the remaining measures, it gives similar improvements as relevance models. However, conceptual language
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models have the added advantage of offering query and browsing suggestions in the form of clearly understandable con-
cepts. It should be noted that while each step in applying conceptual language models is not significantly different from each
other or the steps combined, the full model is able to significantly outperform both a standard language modeling and a rel-
evance modeling approach.

Our second research question concerns the use of an iterative EM algorithm to re-estimate textual and conceptual doc-
ument models. These models are used in the process of determining a conceptual query model based on pseudo-relevant
documents and for determining the translation probabilities from concepts to text. We have shown that this ‘‘parsimonisa-
tion” step is an essential component in order to achieve good performance, since it makes sure that the language models only
generate content-bearing terms. Moreover, since the resulting terms and concepts are more specific (than without EM-based
re-estimation), we believe they are more useful in case these were to be presented to a user. Third, we looked into the
parameter sensitivity of the proposed approach. Similar to conventional pseudo-relevance feedback, the optimal parameter
settings have to be determined on a per collection basis.

Our fourth and final research question concerned the portability of our models. The usefulness of the proposed approach
has been evaluated in two domains, the social science and genomics domain, each with different types of documents and
their own concept vocabularies. Despite these large differences, the concept-based feedback shows consistent improve-
ments. It is interesting to note that while a thesaurus might be limited in representing specific information needs, it can still
be used to improve retrieval effectiveness. The MeSH thesaurus can, be used to improve genomics information retrieval de-
spite its general biomedical coverage. The annotations of the CLEF collections seems to fit the information needs better,
resulting in even better retrieval performance in the social science domain.

As to future work, we envisage several directions. First, in this paper we have relied on manually curated concept anno-
tations of documents. Future work should look into the robustness of the approach when working with automatic conceptual
representations of documents, such as obtained through document classification.

Second, we want to look into the relationship between conceptual and (traditional) term-based relevance feedback. In our
current work we have used relatively simple baseline results for the estimation of our models. We hypothesize that combin-
ing our generative concept models with well-performing methods such as relevance models may improve results even fur-
ther and we will investigate this in future research. Further, for the results that we have presented we have utilized blind
jrelevance feedback, i.e., we have assumed that the top-ranked documents and concepts were relevant. With the test collec-
tions currently available we are unable to confirm or refute whether and how explicit relevance assessments would influ-
ence the results. The same could be posited not only for documents, but also for the associated concepts. As such, we
leave verifying whether user interaction influences the end results for future work. As an added value of this approach
we noted that we obtain an explicit conceptual representation of the query. In future work we will look whether this con-
ceptual representation is appreciated by and useful to an end user. Finally, although we have obtained significant improve-
ments, we concede that the number of terms and documents employed in the estimations is of distinct influence on the end
results. Whether increasing these numbers positively affect retrieval effectiveness remains a topic for future work.
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