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Abstract For peer-to-peer web search engines it is important to quickly
process queries and return search results. How to keep the perceived la-
tency low is an open challenge. In this paper we explore the solution
potential of search result caching in large-scale peer-to-peer information
retrieval networks by simulating such networks with increasing levels of
realism. We find that a small bounded cache offers performance compara-
ble to an unbounded cache. Furthermore, we explore partially centralised
and fully distributed scenarios, and find that in the most realistic dis-
tributed case caching can reduce the query load by thirty-three percent.
With optimisations this can be boosted to nearly seventy percent.

1 Introduction

In peer-to-peer information retrieval a network of peers provide a search service
collaboratively. We define a peer as a computer system connected to the Internet.
The term peer refers to the fact that in a peer-to-peer system all peers are
considered equal and can both supply and consume resources. In a peer-to-peer
network each additional peer adds extra processing capacity and bandwidth in
contrast with typical client/server search systems where each additional client
puts extra strain on the server. When such a peer-to-peer network has good load
balancing properties it can scale up to handle millions of simultaneous peers.
However, the performance is strongly affected by how well it can deal with the
continuous rapid joining and departing of peers which is called churn.

We study peer-to-peer information retrieval systems where each peer con-
tains, and maintains an index over, a subset of all the documents in the system.
Since presumably relevant search results can be located at any peer it is difficult
to route a query to the right one. This problem is commonly approached using
different network topologies and replication of index data [1, 2, 3].

In this paper we explore search result caching. We assume that for each query
there is a peer that can provide a set of original search results. If this query is
posed often that peer would cripple under the demand for providing this set over
and over again. Hence, we propose that each peer that obtains search results for a
particular query caches those results. The effect is that search results for popular
queries can be obtained from many peers: high availability, and the load on the
peer that provided the original results is reduced: load balancing.



We define the following research questions:

. What fraction of queries can be potentially answered from caches?

. How can the cache hit distribution be characterised?

. What is the distribution of cached result sets given an unbounded cache?

. What is the effect of bounding the cache: how does the bound and cache
policy affect performance?

5. What optimisations can be applied to make caching more effective?

6. How does churn affect caching?

U

Most research in peer-to-peer information retrieval focuses on simulating net-
works of hundreds [4] to thousands [3] of peers. In contrast, our experiments are
of a larger scale: using over half a million peers. To our knowledge, there is no
previous scientific work that investigates the properties of networks of this size.
Our motivation is that large peer-to-peer information retrieval networks deserve
more attention because of their real-world potential [5], and that this size is in
the range of operational peer-to-peer networks used for other applications [6].

This paper is organised as follows: we discuss related work in Section 2. We
explain our experiment set-up in Section 3 and show the results of experiments
in sections 4 and 5. Finally, Section 6 concludes the paper.

2 Related Work

Markatos [7] analysed the effectiveness of caching search results for a centralised
web search engine combined with a caching web accelerator. His experiments
suggest that one out of three queries submitted has already been submitted
previously. Cache hit ratios between 25 to 75 percent are possible. He showed
that even a small bounded cache (100MB) can be effective, but that the hit ratios
still increase slowly when the cache size is increased to several gigabytes. The
larger the cache, the less difference the policy for replacing items in the cache
makes. He recommends taking into account both access frequency and recency.

Skobeltsyn and Aberer [4] investigated how search result caching can be used
in a peer-to-peer information retrieval network. When a peer issues a query it
first looks in a distributed meta-index, kept in a distributed hash table, to see if
there are peers with cached results for this query. If so, the results are obtained
from one of those peers, but if no cached results exist, the query is broadcast
through the entire network. The costs of this fallback are O (n) for a network of
n peers. In our experiments we do not distribute the meta-index, but focus only
on the distributed cache. An additional difference is that they always use query
subsumption: obtaining search results for subsets of the terms of the full query.
They claim that with subsumption cache hit rates of 98 percent are possible as
opposed to 82 percent without. The authors also utilized bounded caches, but
do not show the effect of different limits.

Bhattacharjee et al. [8] propose using a special data structure combined with
a distributed hash table to efficiently locate cached search result sets stored
for particular term intersections. This is particularly helpful in approaches that



store an inverted index with query terms as it reduces the amount of network
traffic necessary for performing list intersections for whole queries. This could be
considered to be bottom-up caching: storing results for individual terms, then
combinations of terms up to the whole query level. Whereas subsumption is
top-down caching: storing results for the whole query, then for combinations of
terms and finally for individual terms.

3 Experiment Set-up

3.1 Introduction

Our experiments intend to give insight into the mazimum benefits of caching.
Each experiment has been repeated at least five times, averages are reported,
no differences were observed that exceeded 0.5 percent. We assume that there
are three types of peers: suppliers that have their own locally searchable index,
consumers that have queries to issue to the network, and mized peers that have
both. In our experiments the indices themselves do not actually exist and we
assume that for each query a fixed set of pre-merged search results is available.
We also assume that all peers cooperate in caching search result sets.

3.2 Collection

To simulate a network of peers posing queries we use a large search engine query
log [9]. This log consists of over twenty million queries of users recorded over a
time span of three months. Each unique user in the log is a distinct peer in our
experiment for a total of 651,647 peers. We made several adjustments. Firstly,
some queries are censored and appear in the log as a single dash [10]: these
were removed. Secondly, we removed entries by one user in the log that poses
an unusually high number of queries: likely some type of proxy. Furthermore, we
assume that a search session lasts at most one hour. If the exact same query was
recorded multiple times in this time window, these are assumed to be requests for
subsequent search result pages and are used only once in the simulation. Table
1 shows statistics regarding the log. We play back the log in chronological order.
One day in the log, May 17th 2006, is truncated and does not contain data for
the full day. This has consequences for one of our experiments described later.
For clarity: we do not use real search results for the queries in the log. In our
experiments we make the assumption that specific subsets of peers have search
result sets and obtain experimental results by counting hits only.

Table 1. Query log statistics.

Users 651,647
Queries (All) 21,082,980
Queries (Unique) 10,092,307




3.3 Tracker

For query routing we introduce the tracker that keeps track of which peers cache
search result sets for each query. This is inspired by BitTorrent [11]. However,
in BitTorrent the tracker is used for locating a specific file: exzact search. A hash
sequence based on a file’s contents yields a list of all peers that have an exact
copy of that particular file. In contrast, we want to obtain a list of peers which
have cached search result sets for a specific free-text query: approzimate search.

The tracker can be implemented in various ways: as a single dedicated ma-
chine, as a group of high capacity machines, as a distributed hash table or by
fully replicating a global data index over all peers. Let us first explore if a single
machine solution is feasible. The tracker needs to store only queries and map-
pings to all peers in the network. We can make a rudimentary calculation based
on our log: storing IPv6 addresses for all the 650,000 peers would take about
10MB. Storing all the queries in the log, assuming an average query length of
15 Bytes [9, 12], would take about 315 MB. Even including the overhead of data
structures we could store this within 1GB. Consider that most desktop machines
nowadays have 4GB of main memory and disk space in the range of TeraBytes.
However, storage space is not the only aspect to consider, bandwidth is equally
important. Assume that the tracker is connected to a 100 Megabit line, which
can transfer 12.5 MB per second. The tracker receives queries, 15 Bytes each,
and sends out sets of peer addresses, let us say 10 per query: 160 Bytes. This
means that a single machine can process 81,920 queries per second. This would
work even if 12 percent of the participating peers would query it every second.

In our calculation we have made many idealizations, but it shows that a
single machine can support a large peer-to-peer network. Nevertheless, there
are three reasons to distribute the tracker. Firstly, a single machine is also a
single point of failure: if it becomes unreachable, due to technical malfunction or
attacks, the peer-to-peer network is rendered useless. Secondly, a single machine
may become a bottleneck even outside its own wrongdoing: for example due
to poor bandwidth connections of participating peers. Thirdly, putting all this
information in one place opens up possibilities for manipulation.

4 Centralised Experiments

Let us first consider the case where one supplier peer in the system is the only
peer that can provide search results. This peer does not pose queries. This sce-
nario provides a baseline which resembles a centralised search system. Calculat-
ing the query load is trivial in this case: all 21 million queries have to be answered
by this single central supplier peer. However, what if the search results provided
by the central supplier peer can be cached by the consuming peers? In this sce-
nario the tracker makes the assumption that all queries are initially answered
by the central peer. When a consuming peer asks the tracker for advice for a
particular query, this peer is registered at the tracker as caching search results
for that query. Subsequent requests for that same query are offloaded to caching



peers by the tracker. When there are multiple caching peers for a query, one is
selected randomly. Furthermore, we assume unbounded caches for now.

Figure 1 shows the number of search results provided by the origin central
supplier peer and the summed number of hits on the caches at the consumer
peers. It turns out that results for about half of the queries need to be given by
the supplier at least once. The other half can be served from the caches of other
peers. Caching can reduce the load on the central peer by about 50 percent. This
suggests that about half the queries we see are unique. Skobeltsyn and Aberer
[4] find that only 18 percent of the queries they use are unique. Perhaps this is
because their log is a Wikipedia trace as this is inconsistent with our findings
and contradicts observations of large web search engines [13, p. 183]

Caching becomes more effective as more queries flow through the system.
This is due to the effect that there are increasingly more repeated queries and
less unique queries. So, you always see slightly fewer new queries than queries
you have already seen as the number of queries increases. Perhaps there is mild
influence of Heap’s law at the query level [13, p. 83].

How many results can a peer serve from its local cache and for how many
does it have to consult caches at other peers? The local cache hit ratio climbs
from around 22 percent for several thousand queries to 39 percent for all queries.
These local hits are a result of re-search behaviour [14]. The majority of cache
hits, between 61 and 78 percent, is on external peers.
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Figure 1. Distribution of hits when peers perform result caching.

Let us take a closer look at external hits. We define a peer’s share ratio as:

shareratio = #cachehits/#queries (1)

where cachehits is the number of external hits on a peer’s cache: all cache hits
that are not queries posed by the peer itself. Queries is the number of queries
issued by the peer. A shareratio of 0 means that a peer’s cache is never used for
answering external queries, 1 that a peer answers as many queries as it poses,
and above 1 indicates that a peer serves results for more queries than it sends.



Figure 2 shows that about 20 percent of peers does not share anything at
all. It turns out that the majority of peers, 68 percent, at least serve results for
some queries, whereas only 12 percent, about 80,000 peers, serve results for more
queries than they issue.
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Figure 2. Observed share ratios.

4.1 Required Cache Sizes

So far we have assumed caches of unbounded size. This is not very realistic since
machines in a peer-to-peer network have limited resources. Let us try to find out
how big a cache we really need. Figure 3 shows the distribution of the number of
cached items per peer for the previous experiment. We see that the vast majority
of peers, about 225 000, cache between 1 and 5 search result sets. The graph is
cut-off after 250 results, but extends to the highest number of cached items seen
at a single peer: about 7500.

How much space does it take to store a set of search results? Assume that
each set of results consists of 10 items and that each item consists of a URI,
a summary and some additional meta-data, taking up 1K of space: 10K per
set. Even for the peer with the largest number of cached results this takes only
73MB. However, a cache of 5 items, 50KB, is much more typical. Table 2 gives
an overview of storage requirements for various search result set sizes. Most
modern personal computers can keep the entire cache in main memory, even
with a supporting data structure like a hash table.

Table 2. Cache storage requirements in MegaBytes (MB). Assumes each search
result takes up 1KB: 5 results for low, 100 for medium and 7500 for high.

Result Set Size Low (5) Medium (100) High (7500)
10 0.05 1 73
100 0.5 10 730

1000 5 98 7300




Number of Cached Results per Peer

# Peers (x 1000)
50 100 150 200 250 300

0
L

T T T T T 1
1 50 100 150 200 250

# Cached Results

Figure 3. Observed cache sizes. Each bar represents 5 search results. The hori-
zontal axis extends to 7500. The visible part of the graph covers 99.2 percent of
all peers, each peer caches at least one search result.

4.2 Bounded Caches

As suggested in the previous section: it is possible to use unbounded caches for at
least some time. However, it is not very desirable to do so for two reasons. Firstly,
if systems run for an extended period of time, the cache has to be bounded
somehow since it will run out of space eventually. Secondly, there is no point in
keeping around result sets that are not requested any more.

We want to limit the size of the cache at some maximum number of search
result sets to keep. To this end we investigate three different cache policies, with
different limits on the cache size. When a new result set has to be inserted in
the cache and the cache limit is reached the cache policy comes into play.

The most basic policy when the cache limit is reached is to throw out a
random result set, this is called Random Replacement (RR) [15]. The advan-
tage of this method is that it requires no additional administration at all. The
downside is that we may be throwing away valuable sets from the cache. What
is valuable is conventionally expressed using either frequency or recency which
provides the motivation for the two other policies tested [7]. In the Least Fre-
quently Used (LFU) policy the search result set which was consulted the least
amount of times, meaning: which has the least hits, is removed. In Least Recently
Used (LRU) the search result set that was least recently consulted is removed.
In the case of LFU there can be multiple ‘least’ sets which have the same lowest
hit count. If this occurs a random choice is made among those sets.

Figure 4 shows the hit distribution for the baseline unbounded cache and the
RR, LFU and LRU caching strategies with various cache limits after running
through the entire log. Experiments were conducted with per-peer cache limits
of 5, 10, 20, 50 and 100 result sets. We can see that a higher cache limit brings
the results closer to the unbounded baseline, which is what we would expect.



The most basic policy, Random Removal, performs worst particularly when the
cache size is small (L5, L10). However, it performs almost the same as the LFU
algorithm for large caches (L50, L100). In fact LFU performs quite poorly across
the board. We believe this is caused by the fact that there can be many sets with
the same hit count in a cache which degrades LFU to RR. For all cases the LRU
policy is clearly superior. Although, the higher the limit, the less it matters what
policy is used, also found by [7]. L100/LRU with 10 results per set takes only
1MB of space and achieves 99.1 percent of the performance of unbounded caches.

Bounded Cache Performance
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Figure4. Bounded cache performance. The total number of queries is
21,082,980. The bars show the amount serviceable from peer caches for vari-
ous per-peer cache size limits (5, 10, 20, 50 and 100) and strategies (RR, LFU
and LRU). The rightmost bar shows the performance with unbounded caches.

4.3 Optimisations

In this section we use unbounded caches and investigate the impact of several
optimisations: stopword removal, reordering, stemming and query subsumption.
These techniques map multiple queries that were previously considered distinct
to one common query representation. Since the number of representations is
lower than the original number of queries, the strain of serving original search
results on the central supplier peer is also lower. This capitalizes on the fact that
there are cached copies of search result sets around for similar queries.

For stopword removal we remove words from queries that match those in
a stopword list used by Apache Lucene consisting of 33 English terms. For re-
ordering, the words in the query are alphabetically sorted, for example: from
“with MacCutcheon you live happily ever after” to “after ever happily live Mac-
Cutcheon with you”. The last common technique is stemming, for example from
“airplane” and “airplanes” to “airplan”. This example also shows the well known



drawback of stemming: that of reducing unrelated distinct meanings to the same
form. We used the Porter2 English stemming algorithm [16].

We ran experiments with the three described techniques individually and
all three combined. The first five rows of Table 3 show the results. We see that
without any optimisations the central peer has to serve 47.9 percent of all queries.
Applying stopping or re-ordering only marginally improves this by about half
a percent. Stemming offers the best improvement: over 1.6 percent. Combining
the techniques is quite effective and yields a 3.1 percent improvement in total,
which is more than the sum of the individual techniques.

One final technique that is less commonly used is query subsumption [4].
When a full query yields no search results, subsumption breaks the query into
multiple subqueries. This process iterates with increasingly smaller subqueries
until at least one of these queries yields search results. The subqueries generated
are combinations, with no repetition, of the terms in the full query. The length
goes down each iteration, starting from len(query) — 1 terms to a minimum of 1
term. For example, given a resultless query ¢ of length three: “A B C”, we next
try the three combinations of length two: “A B”, “A C” and “B C”. If that yields
no results we try all combinations of length one, which are the individual terms
“A” “B” and “C”. The rationale for iterating top-down, from the whole query
to the individual terms, is that longer queries are more specific and are thus
expected to yield more specific, higher quality, results. Long queries generate
an unwieldy number of possible subqueries. Therefore, we restrict the maximum
number of generated combinations at any level to 1000.

In our experiment we evaluate at each iteration whether there is a query
that yields at least one search result set. If so: all queries at that same iteration
level for which there are cached result sets generate cache hits. Hence, for the
example above, if for the full query “A B C” search results are not available, but
there is at least one result at the level of individual terms: “A”, “B” and “C”. The
full query can generate 1-3 cache hits: one for each individual term for which a
result set is available. This thus causes the total amount of cache hits to increase
beyond the number of original queries and simulates the effect of increased query
load for merging result sets from multiple peers.

Table 3 shows the results. As mentioned the total amount of cache hits is
different: 24 million for subsumption alone, a 13.6 percent increase. Nevertheless,
performance improves with 21.4 percent less strain on the central peer. Com-
bining subsumption with the three other techniques further increases the query
total to nearly 26 million, but also further decreases the central peer load by
4.2 percent. The trade-off with subsumption is a higher total query load, but
a lower load on the central peer. It reduces query-level caching to term-level
caching which is known to have higher hit rates [13, p. 183]

All the discussed optimisations decrease precision in favour of higher recall.
Hence, the quantity of search results for a particular query goes up, but the
quality is likely to go down. Whether such a trade-off is justified depends on how
sparse the query space is to begin with. However, for a general search engine, it
certainly makes sense to apply some, if not all, of these techniques.



Table 3. Cache hits for various optimizations (x 1,000). Shows what party
answers what query as an absolute number and percentage. The first five rows
have a total query count of 21 million. The sixth 24 and the seventh 26 million.

Central Internal External
Baseline 10,092  47.9% 4,237  20.1% 6,754  32.0%
Sto(P) 9,993  47.4% 4,265  20.2% 6,824  32.4%
(R)eorder 9,992 47.4% 4,274 20.3% 6,816 32.3%
(S)tem 9,768  46.3% 4,359  20.7% 6,955 33.0%
P+R~+T 9,449  44.8% 4,462 21.2% 7,172 34.0%
S(U)bsumption 6,352  26.5% 7,239  30.2% 10,365  43.3%
P+R+T+U 5,773  22.3% 8,335 32.1% 11,834  45.6%

5 Decentralised Experiments

Now that we have shown the effectiveness of caching for offloading one central
peer, we make the scenario more realistic. Instead of a central peer we introduce
n peers that are both supplier and consumer. These mixed peers are chosen at
random. They serve search results, pose queries and participate in caching. The
remaining peers are merely consumers that can only cache results.

The central hits in the previous sections become hits per supplier in this
scenario. We further assume unbounded caches and no optimisations to focus
on the differences between the centralised and decentralised case. How does the
distribution of search results affect the external cache hit ratios of the supplier
peers? We examine two distribution cases:

Single Supplier For each query there is always only exactly one supplier with
unique relevant search results.

Multiple Suppliers The number of supplier peers that have relevant search
results for a query depends on the query popularity. There is always at least
one supplier for a query, but the more popular a query the more suppliers
there are (up to all n suppliers for very popular queries).

For simplicity we assume in both cases that there is only one set of search
results per query. In the first case this set is present at exactly one supplier
peer. However, the second case is more complicated: among the mixed peers
we distribute the search results by considering each peer as a bin covering a
range in the query frequency histogram. We assume that for each query there
is at least one peer with relevant results. However, if a query is more frequent
it can be answered by more peers. The most frequent queries can be served by
all n suppliers. The distribution of search results is, like the queries themselves,
Zipf over the suppliers. We believe that this is realistic, since popular queries on
the Internet tend to have many search results as well. In this case the random
choice is between a variable number m of n peers that supply search results for a
given query. Thus, when the tracker receives a query for which there are multiple
possible peers with results it chooses one randomly.



We performed two experiments to examine the influence on query load. The
first is based on the single supplier case. The second is based on the multiple
suppliers case. For multiple suppliers we first used the query log to determine
the popularity of queries and then used this to generate the initial distribution
of search results over the suppliers. This distribution is performed by randomly
assigning the search results to a fraction of the suppliers depending on the query
popularity. Since normally the query popularity can only be approximated, the
results represent an ideal outcome. We used n = 10,000 supplier peers in a
network of 651,647 peers in total (about 1.53 percent). This mimics the Internet
with a small number of websites and a very large number of surfing clients.

Figure 5 and Table 4 show the results. The number of original search results
provided by the suppliers is about five percent higher than in the central peer
scenario. This is the combined effect of no explicit offloading of the supplier peers
by the tracker, and participation of the suppliers in caching for other queries.
In the second case there is slightly more load on the supplier peers than in
the first case: 57 percent versus 55 percent. The hit distribution in Figure 5 is
similar even though the underlying assumptions are different. About 87 percent
of peers answer between 1000 and 1500 queries. A very small number of peers
answers up to about five times that many queries. Differences are found near the
low end, which seems somewhat more spread in the single supplier than in the
multiple suppliers case. Nevertheless, all these differences are relatively small.
The distribution follows a wave-like pattern with increasingly smaller peaks:
near 1300, 2500, 3700 and 4900 (not shown). The cause of this is unknown.

Table 4. Original search results and cache hits (x 1,000). 10,000 peers are sup-
pliers operating in mixed mode.

Single Multiple
Suppliers (origin) 11,599 12,111
Consumers internal (caches) 3,683 3,930
Consumers external (caches) 5,801 5,042

5.1 Churn

The experiments thus far have shown the maximum improvements that are at-
tainable with caching. In this section we add one more level of realism: we no
longer assume that peers are on-line infinitely. We base this experiment on the
single supplier case from the previous section where the search results are uni-
formly distributed over the suppliers. The query log contains timestamps and we
assume if a specific peer has not issued a query for some period of time, its ses-
sion has ended and its cache is temporarily no longer available. If the same peer
issues a query later, comes back on-line, its cache becomes available again. This
simulates churn in a peer-to-peer network where peers join and depart from the
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Figure 5. Supplier external hit distributions (n—10,000 suppliers).

network. We assume the presence of persistent peer identifiers, also used in real-
world peer-to-peer systems [17]. All peers, including supplier peers, are subject
to churn. For bootstrapping: if there are no suppliers on-line at all, an off-line
one is randomly chosen to provide search results.

Assuming that all peers are on-line for a fixed amount of time is unrealistic.
Stutzbach and Rejaie [6] show that download session lengths, post-download lin-
gering time and the total up-time of peers in peer-to-peer file sharing networks
are best modelled by using Weibull distributions. However, our scenario differs
from file sharing. An information retrieval session does not end when a search re-
sult has been obtained, rather it spans multiple queries over some length of time.
Even when a search session ends, the machine itself is usually not immediately
turned off or disconnected from the Internet. This leads us to two important fac-
tors for estimating how long peers remain joined to the network. Firstly, there
should be some reasonable minimum that covers at least a browsing session. Sec-
ondly, up-time should be used rather than ‘download’ session length. As soon as
a peer issues its first query we calculate the remaining up-time of that peer in
seconds as follows :

remaininguptime = 900 + (3600 - 8) - w (2)

where w is a random number drawn from a Weibull distribution with A = 2
and £ = 1. The w parameter is usually near 0 and very rarely near 10. The
up-time thus spans from at least 15 minutes to at most about 80 hours. About
20 percent of the peers is on-line for longer than one day. This mimics the
distribution of up-times as reported in [6], making the assumption the uptime
of peers in file sharing systems resembles that of information retrieval systems.

Figure 6 shows the results: the number of origin search results served by
suppliers as well as the number of internal and external hits on the caches of



consumer peers. We see that the number of supplier hits increases to over 12.75
million: over 1.16 million more compared to the situation with no churn. The
majority of this increase can be attributed to a decrease in the number of external
cache hits. The dotted cloud shows the size of the peer-to-peer network on the
right axis: this is the number of peers that is on-line simultaneously. We can see
that this varies somewhere between about 30,000 and 80,000 peers. There is a
dip in the graph caused by the earlier described log truncation.

Hit Distribution (Churn)
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Figure 6. Distribution of hits under churn conditions (N=651,647 peers).

We also ran this distributed experiment with churn with a L100 LRU cache
and all optimizations from the previous section enabled: stopping, re-ordering,
stemming and query subsumption. This yields a cache hit ratio of 69 percent
(for 25,45 million queries) for this most realistic scenario.

6 Conclusion

We conducted several experiments that simulate a large-scale peer-to-peer infor-
mation retrieval network. Qur research questions can be answered as follows:

1. At least 50 percent of the queries can be answered from search result caches in
a centralised scenario. For the decentralized case cache hits up to 45 percent
are possible.

2. Share ratios, the rate between cache hits and issued queries, are skewed which
suggests that additional mechanisms are needed for cache load balancing.

3. The typical cache size is small, with outliers for eagerly consuming peers.
Peers that issue a lot of queries also provide lots of cached results.



4. Small bounded caches approach the performance of unbounded caching. The
Least Recently Used (LRU) cache replacement policy consistently outper-
forms the other policies. However, the larger the cache the less the policy
matters. If each peer were to keep just 100 cached search result sets the
performance is 99.1 percent of unbounded caches.

5. We have shown that stopword removal, stemming and alphabetical term
re-ordering can be combined to boost the amount of cache hits by about
3.1 percent. Query subsumption can increase cache hits by 21.4 percent, to
nearly 80 percent, but also imposes a higher total query load. All of the
optimisation techniques trade search result quality for quantity. However,
they all improve the effective usage of caches.

6. Introducing churn reduces the maximum attainable cache hits to 33 per-
cent (-12 percent) without optimizations and 69 percent (-11 percent) with
optimizations.

We have shown the potential of caching under increasingly realistic conditions
using a single large query log. Caching search results significantly offloads the
origin suppliers that provide search results under all considered scenarios using
this log. These experiments could be extended by adding extra layers of realism.
For example individual search results could be considered instead of fixed search
results per query, allowing merging and construction of new search result sets.

We have explored several fundamental caching policies showing that Least
Recently Used (LRU) is the best approach for our scenario. However, more
advanced policies could be explored that include frequency as a component such
as 2Q, LRFU or ARC [7, 18, 15]. These techniques combine advantages of LRU
and LFU. Nevertheless, In reality there may be more than just LRU/LFU to
take into account. For example queries pertaining to current events for which the
relevant search results frequently change. The result sets for such queries should
have a short time to live, whereas there are queries for which the search results
change very rarely, they could be cached much longer. Making informed decisions
about invalidation requires knowledge about the rate of change for particular
queries [19]. Perhaps this information, or an estimate thereof, could be made an
integral part of the search results, similar to the way in which Domain Name
System (DNS) records work. Furthermore, we have assumed that the capacity of
the tracker is unbounded. However, a policy similar to what is used to maintain
peer caches could be applied there too. This does have the consequence that
the tracker looses track of search results which are available, but for which the
mappings have been thrown away. Finally, we have not investigated peer selection
and result merging, both of which are relevant for real-world systems [5].
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