Folktales As Classifiable Texts

Learning to Extract Folktale Keywords

Dolf Trieschnigg, Dong Nguyen and Mariët Theune
Once upon a time…

• There was a research institute in Amsterdam that wanted to collect folktales…
• Not only to study Dutch folklore, but also to document part of the Dutch oral tradition...
• They asked people from all over the Netherlands to collect stories in their surroundings
• How did they do that in a time without tablets, smartphones and laptops?
They got on their bike and used pencil and paper. Later they even used tape recorders...
- They stored these stories in large archives to collect dust and to be used by researchers.
In 1994 they started inserting the archives in a so-called database: The Dutch Folktale Database was born...
They employed students to digitize these paper stories, add metadata, and store them in the database.
• In 2004 the database became available online!
• So the Meertens Institute lived happily ever after?
• No, because still too many stories await archiving; adding metadata takes too much time.
• So they decided to study automatic keyword extraction.
Overview

- About the collection: The Dutch Folktale Database
- **Characteristics** of keywords in the DFDB
 - Statistics
 - How do the keywords relate to the story text?
 - Do annotators agree?
- **Automatic extraction** of keywords
 - Setup, systems & results
 - Which features to use?
- Conclusion
The Dutch Folktale Database

- Maintained by the Meertens Institute since 1994
- > 40,000 Dutch folktales, collected since the 19th century
- Subgenres
 - Fairy tales, legends, urban legends
 - jokes, riddles, personal narratives
- Languages
 - Dutch, Frisian, Old Dutch, Middle Dutch and many Dutch dialects
- Other metadata
 - Summary, keywords, story type, motifs
 - proper names, storyteller, location etc.
- Online since 2004: www.verhalenbank.nl
Keywords in the DFDB (1/2)
Keywords in the DFDB (2/2)

- Keyword assignment
 - Manual uncontrolled vocabulary indexing
 - Vaguely defined indexing task
 - Carried out by many different annotators
- Statistics (42k docs, 17k Dutch)
 - 15 assigned keywords on average, median 10
 - Mostly single words (90%)
 - 43k unique keywords
 - 65% of keywords appears literally in (Dutch) text
How do the keywords relate to the story text?

- Manual classification of 50 docs, 989 keywords

- Classes
 - Literal: 68%
 - Almost literal: 12%
 - Synonym: 5%
 - Hypernym: 2%
 - Typing error: <1%
 - Other (more abstract, etc.): 13%

- 80% can be (almost) literally linked to the text
Do annotators agree?

• Setup
 • 10 annotators (2 experienced), 5 stories each
 • Each story annotated by 2 annotators
 • Judge all story words:
 1) non-relevant; 2) relevant; 3) highly relevant
 • Determine inter-annotator agreement
• Results:
 • Substantial agreement on relevant keywords (κ: 0.62), only moderate agreement on highly relevant keywords (κ: 0.48)
 • Reasons for disagreement
 1) verbs and adjectives? 2) overlooked
 3) choice rather than both 4) lack of instructions
 • Experienced annotators indicate more relevant keyword and show higher average agreement
Automatic extraction

• Setup
 • Ranking task: rank most relevant words from text first
 • Evaluation: reproduce manual keyword list (IR metrics)
 • 17,000 documents, 10-fold cross-validation

• Systems
 • Baseline 1: TF-IDF (in training collection)
 • Baseline 2: TF-IDF-T (prefer seen keywords)
 • Learning to rank: linear ranking SVM
 • Features from word, document and collection context

• Results

<table>
<thead>
<tr>
<th>System</th>
<th>MAP</th>
<th>P@5</th>
<th>P@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF-IDF</td>
<td>0.260</td>
<td>0.394</td>
<td>0.317</td>
</tr>
<tr>
<td>TF-IDF-T</td>
<td>0.336</td>
<td>0.541</td>
<td>0.384</td>
</tr>
<tr>
<td>rank-SVM</td>
<td>0.399</td>
<td>0.631</td>
<td>0.453</td>
</tr>
</tbody>
</table>
Which features to use?

All features
- Word context
 - Starts uppercase
 - Contains space
 - Is number
 - Contains letters
 - All capital letters
 - Single letter
 - Contains punctuation
 - Part of speech
- Document context
 - Tf
 - First offset
 - First sentence offset
 - Sentence importance (SumBasic)
 - Dispersion (Gries, 2008)
- Collection context
 - Idf
 - Tf.idf
 - Is training keyword
 - Assignment ratio

Minimum set
- Part of speech
- Dispersion
- Tf.idf
- Assignment ratio

<table>
<thead>
<tr>
<th>System</th>
<th>MAP</th>
<th>P@5</th>
<th>P@R</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank-SVM</td>
<td>0.399</td>
<td>0.631</td>
<td>0.453</td>
</tr>
<tr>
<td>minimum set</td>
<td>0.405</td>
<td>0.631</td>
<td>0.459</td>
</tr>
</tbody>
</table>
Conclusion

• For the Dutch Folktale Database
 • Uncontrolled indexing is necessary
 • Many single word keywords which appear (almost) literally in text
 • Moderate to substantial agreement between annotators
• Learning to rank can be used for suggesting keywords
 • 3 out of top 5 relevant
 • Important features:
 1) assignment ratio, 2) tf.idf, 3) part-of-speech and 4) dispersion
• Future work
 • Deal with multilingual content
 • Suggest abstract keywords
Questions?

• D.Trieschnigg@utwente.nl