SearchResultFinder: Federated Search Made Easy

Dolf Trieschnigg, Kien Tjin-Kam-Jet and Djoerd Hiemstra
University of Twente
Enschede, The Netherlands
{trieschn,tjinkamj,hiemstra} @cs.utwente.nl

ABSTRACT

Building a federated search engine based on a large number
existing web search engines is a challenge: implementing the
programming interface (API) for each search engine is an
exacting and time-consuming job. In this demonstration we
present SearchResultFinder, a browser plugin which speeds
up determining reusable XPaths for extracting search result
items from HTML search result pages. Based on a single
search result page, the tool presents a ranked list of can-
didate extraction XPaths and allows highlighting to view
the extraction result. An evaluation with 148 web search
engines shows that in 90% of the cases a correct XPath is
suggested.

Categories and Subject Descriptors

H.2.8 [Database applications|: Data mining; 1.5.4 [Pat-
tern Recognition]: Applications— Text processing; H.3.5
[Information Storage and Retrieval]: Online Informa-
tion Services— Web-based services

Keywords

Web extraction, Scraper, Wrapper, Search result extraction

1. INTRODUCTION

Federated search engines combine the power of multiple
engines in one: based on the user query the most appro-
priate resources (search engines) are queried and their re-
sults are merged into a single view. The search results
from these resources have to be obtained in a machine
readable way so they can be combined in a uniform view.
Some resources provide an application programming inter-
face (API) to achieve this, or provide their search results
in commonly used syndication formats such as Atom and
RSS. The OpenSearch® project has proposed standardized

"http://www.opensearch.org

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGIR’13, July 28—August 1, 2013, Dublin, Ireland.

ACM 978-1-4503-2034-4/13/07.

formats to exchange search results, but has seen only lim-
ited adoption. As a result, the only way to obtain machine
readable results from these search engines is to extract or
scrape them from the generated HTML.

In this demonstration we present a browser plugin which
aids search result scraping. Based on a single (currently
viewed) search result page, SearchResultFinder returns a
ranked list of XPath expressions which can be used to ex-
tract results from pages based on the same template. XPath
is a query language to select nodes from XML documents,
or in this case, select nodes from the document object tree
parsed from the HTML page.

We first describe related systems and their shortcomings.
Then we briefly describe the algorithm to extract and rank
XPaths and the operation of the plugin. We describe an
evaluation on 148 web search engines, and round up with a
conclusion.

2. RELATED SYSTEMS

Related work can be found in the area of web informa-
tion extraction and wrapper induction. Where early work
focused on manual wrapper generation (e.g. [2]), later work
focusses on interactive and fully automatic wrapper extrac-
tion (e.g. [1, 3-5, 7, 8]). For a more detailed review, we
refer the reader to [6].

Systems vary in 1) the number of required, sometimes
manually labeled, example pages; 2) the type of features
used for extraction. Some methods treat a page as a se-
quence of tags, others exploit the tree structure and take
into account rendering features; 3) the techniques used for
extraction, varying from grammars and grammar learning to
patricia trees, similarity learning and clustering techniques.
Heuristics are frequently employed to reduce the complexity.

Typically a scraper or wrapper is constructed for each
search engine: based on one or more search result pages from
the same search engine, a program is generated or configured
which can extract machine readable search results. The cur-
rently available wrapper generators have serious drawbacks
making them unattractive to use. Firstly, they require a
lot of effort to operate: multiple search result pages have to
be saved to file, the generator has to be run and the output
has to be inspected seperately and manually. Secondly, they
are not robust or the software has been outdated. Existing
wrapper generators frequently rely on buggy HTML parsers
which are not easy to upgrade. Thirdly and finally, they
create wrappers which are hard to integrate in a federated
system. The wrapper frequently is a standalone program
which requires additional programming effort to integrate.

WEB IMAGES SHOPPING NEWS MORE

blﬁg search result extraction P
B
1.550.000 RESULTS ~ Narrow by language ~ Narrow by region ¥
Search Result: Extraction al RELATED SEARCHES
ww rflow.aspx2type m=Extraction Exam Results
Extraction of ATP (in ‘Soil microbial biomass and ATP update) During ATP extraction Check Results
from soil, it is necessary to disrupt the microbial cells in order to release ... Checker Results
: " College Results
Tutorial Search: mfcc feature extraction code, Page 34 #2 ca C:‘_on esults
www.roseindia.net/tutorialsearch/?t=mfcc%z20feature%20extraction%200... ueat !
Displaying search result for: mfcc feature extraction code Java Code - Java Beginners Facebook Search
Java Code Given a arrav named with 12 double values ... Search Result Direct
Search Result Finder % Free People Search Results
ature extraction ... #3
xpatns | 100 ttraction%20code
Java word extraction
Xpath Nodes AreaMin Avg grid Need to code a public class ...
@ /1L Jdiv/d/divh3ja] 1o 40088006008410x| | |if hig nns documents) #4
i 9 4435600.69 0.84 9x1 B

8 392000.95 0.99 8x1
8 205140.95 0.99 4x2 [ry to change your search
4 128700.950.99 4x1 jults

4

Figure 1: The SearchResultFinder plugin in action

In this demonstration we present a system which: 1) is
integrated in the browser and easy to operate; 2) requires
only a single search result page for operation; 3) outputs
reusable XPath expressions to extract search results using a
programming language of your choice; 4) allows the user to
visually inspect the extracted result.

3. THE ALGORITHM AND PLUGIN

Due to space limitations we can only give a brief descrip-
tion of the algorithm for extracting XPaths. The full algo-
rithm is described in Trieschnigg et al. [6].

The overall approach is as follows. The browser is used
to fetch the webpage, construct a DOM tree and render
the search results. Both the constructed DOM tree and
information about its rendered components are used in the
algorithm.

First a set of candidate XPaths is generated. Repeat-
ing anchor (<a>) nodes are searched and grouped according
to their generalized XPath, consisting of the node names
encountered when traversing from the root to this an-
chor (for instance, /html/body/div/div/a). Based on at-
tribute values of these anchor nodes and their ancestors,
XPath predicates are generated and used to select sub-
sets of (ancestor) nodes. These XPaths are simplified by
adding predicates with unique attribute values. For in-
stance the XPath //html/body/div/a might be generalized
to //div[id='results']/a.

Second, this set of candidate XPaths is ranked based on
a number of features including rendering and similarity of
the nodes retrieved by this candidate XPath. The ranking
is based on rules and manually set thresholds (based on a
training collection described in [6]).

The algorithm is implemented in JavaScript and is avail-
able as a plugin for Firefox. The user navigates to a search
result page, starts the plugin and a popup is presented with
the ranked list of candidate XPaths found for the page. The
nodes selected by these XPaths can be visually inspected by
ticking them in the list. Fig. 1 shows a screenshot of the
plugin active on a webpage.

4. EVALUATION

We evaluated the plugin on 148 web search engines in 23
diverse categories such as academia, audio, video, images,
shopping, books, recipes, health and news. Table 1 lists the

Evaluated search engines 148

Correct XPath at rank 1 120
Correct XPath at rank 2 8
Correct XPath at rank > 2 5
Correct XPath not found 15
Mean reciprocal rank 0.84

Table 1: Performance in extracting XPaths

results. In more than 81% of the pages, the first suggested
XPath correctly extracts the results. In 9% of the pages a
correct XPath is found at the second or higher rank. For 10%
of the pages, no correct XPath is suggested. The average
running time per page is less than 1 second (on a basic pc).

5. CONCLUSION

In this demonstation we presented SearchResultFinder, a
browser plugin for quickly and easily determining XPaths to
scrape search results from web search engines. The plugin
is available online®. In future work we plan to extend the
plugin with automatic detection and labeling of attributes,
such as primary anchor, title, and thumbnail.

Acknowledgements

This research was supported by the Netherlands Organi-
zation for Scientific Research, NWO, grants 639.022.809,
612.066.513 and CATCH project FACT.

References

[1] M. Alvarez, A. Pan, J. Raposo, F. Bellas, and
F. Cacheda. Extracting lists of data records from
semi-structured web pages. Data & Knowledge
Engineering, 64(2):491-509, 2008.

[2] V. Crescenzi and G. Mecca. Grammars have
exceptions. Information Systems, 23(8):539-565, 1998.

[3] D. Freitag. Multistrategy learning for information
extraction. In Fifteenth International Conference on
Machine Learning, pages 161-169, 1998.

[4] B. Liu, R. Grossman, and Y. Zhai. Mining data records
in Web pages. In SIGKDD ’03, pages 601-606, 2003.

[5] K. Simon and G. Lausen. Viper: augmenting automatic
information extraction with visual perceptions. In
CIKM ’05, pages 381-388, 2005.

[6] D. Trieschnigg, K. Tjin-Kam-Jet, and D. Hiemstra.
Ranking XPaths for extracting search result records.
Technical Report TR-CTIT-12-08, CTIT, University of
Twente, Enschede, 2012.

[7] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu.
Fully automatic wrapper generation for search engines.
In WWW ’05, pages 66-75, 2005.

[8] S. Zheng, R. Song, J.-R. Wen, and C. L. Giles. Efficient
record-level wrapper induction. In CIKM 09, pages
47-56, 2009.

*http://snipdex.org/srf/

