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Abstract

This workshop report discusses the collaborative work of UT, EMC and TNO on the
TREC Genomics Track 2007. The biomedical information retrieval task is approached using
cross language methods, in which biomedical concept detection is combined with effective IR
based on unigram language models. Furthermore, a co-occurrence method is used to select
and filter candidate answers. On its own, the cross lingual approach and the filtering do
not strongly improve retrieval results. However, the combination of approaches does show a
strong improvement over the monolingual baseline.

1 Introduction

The TREC Genomics track focuses on literature disclosure in the genomics domain. This report
discusses the collaborative work of the University of Twente, Erasmus Medical Center and TNO
on the TREC Genomics Track 2007.

The 2007’ task is to answer 36 biological information needs using a fixed collection of around
160.000 full-text articles from Highwire Press. The information needs require answers in the form
of a particular entity type, ranging from “genes” to “signs or symptoms”. The systems should
return passages, short strings of text from the original documents, containing the answer.

During last year we achieved reasonable (document retrieval) results using unigram language
models without using any additional knowledge from biological databases. In this year’s approach
we focus on:

• A cross language approach to improve query language model estimation. A concept-tagged
corpus is used as a parallel corpus to create a statistical translation dictionary (translating
concepts to tokens and vice versa). The dictionary is used to translate concepts detected in
the topic description to a query language model.

• Using a co-occurrence based method to determine and filter candidate answers.

In the following section the approach will be discussed in more detail. After that, the runs and
achieved results are discussed.

2 Approach

Our approach consists of an offline and an online process.
The offline process, which is carried out beforehand, consists of the following steps:
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• Creation of the ontologies for each of the entity types used in the topics;

• Biomedical concept recognition on the collection to create a concept-tagged collection;

• Using the concept-tagged collection to create a statistical translation dictionary (consisting
of concept-word pairs and a probability);

• Creation of an index of the valid passages in the collection.

The offline process is discussed in section 3. The online process, the retrieval process which is
carried out for each of the topics, consists of the following steps:

• Use the dictionary to create a query language model for the topic;

• Find the best matching spans;

• Extract candidate answer concepts based on co-occurrence and select spans containing can-
didate concepts.

The online process is discussed in section 4.

3 Offline process

3.1 Collection preprocessing

The document collection preprocessing is similar to last year [6]. The HTML documents are split
into sections with corresponding section titles, using several different templates to support the
differences in document formatting. Texts within <TABLE>, <A> (hyperlink), and <FONT> tags are
ignored, thus also ignoring figure captions. Sentences are split using a simple algorithm developed
by our team, using an unsupervised sentence boundary detection approach (based on the work
of A. Mikheev [4]). For each sentence the byte offsets of the first and the last character in that
sentence are reported. Last year the sections materials & methods, literature references and
acknowledgements were removed. However, after observing that last year’s ground truth data
also contains relevant passages from these sections, we decided to include them for this year’s
participation.

3.2 Ontology creation

To detect the concepts in the documents, we needed an ontology that contains one or more terms
for each concept. For every category of concepts a specific source of information was used:

GENES and PROTEINS We made no distinction between genes and proteins. For five or-
ganisms (Homo sapiens, Mus musculus, Rattus Norvegicus, Drosophila melanogaster, and
Caenorhabditis elegans) we extracted the gene and protein names from Swiss-Prott 1 and
Entrez-Gene 2. Entries with matching database identifiers were combined. Using data from
HomoloGene 3, homologs in different species were also combined into a single concept.

MUTATIONS, CELLS, and NEOPLASMS For these categories, we used the appropriate
subtrees from the MeSH (Medical Subject Headings 4) thesaurus.

DRUGS, DISEASES and SIGNS AND SYMPTOMS For these categories, we used the
concepts belonging to the appropriate semantic types from the UMLS (Unified Medical
Language System5 thesaurus.

1http://www.expasy.org
2http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
3http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene
4http://www.ncbi.nlm.nih.gov/sites/entrez?db=mesh
5http://www.nlm.nih.gov/research/umls
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TOXICITIES We manually created a thesaurus for this category, containing 17 different toxic-
ities.

MOLECULAR FUNCTIONS For this category, we used the appropriate subtree from the
Gene Ontology6.

PATHWAYS We extracted pathway names from Medline using the following procedure: First,
we selected a subset of documents using the query “gene OR protein”, limited to publi-
cations in the last five years. We then extracted passages that matched the pattern “the
<x> pathway”, where <x> could be a maximum of four words. If <x> also occurred in the
pattern “a <x> pathway” it was removed from the list, to correct for spurious matched such
as “the unknown pathway” or “the complex pathway”. We furthermore manually checked
the remaining list of potential pathway names.

STRAINS and ANTIBODIES We were not able to construct thesauri for the categories
STRAINS and ANTIBODIES.

3.3 Concept recognition

Concept recognition was performed using our Peregrine tool [5], Both text and ontology terms
were tokenized. A token was considered to be a consecutive string of letters and/or numbers, all
other characters were discarded. Tokens in the text were matched to the tokens in the ontology
terms to detect concepts in the text. For all concepts except genes or proteins, the tokens were
reduced to their normalized form using the LVG normalizer [3] prior to matching.

Because gene and protein names are often highly ambiguous, we used several simple rules to
detect and possibly resolve ambiguous gene and protein names:

1. We first determined whether a term is ambiguous. A term is considered ambiguous if it
refers to more than one gene in the dictionary, or when it is shorter than six characters and
does not contain a number. A non-ambiguous term will automatically be assigned.

2. An ambiguous term will only be assigned if a synonym is found in the same document, or
the term is the preferred name of the gene.

Because the simple disambiguation is rather strict, we also allowed ambiguous terms to be
assigned if a keyword was found in the same document. A keyword is a word (i.e. a token) that
occurs in any of the long-form names of the gene, and appears less than n times in the dictionary
as a whole. We have achieved the best results with n = 1,000. For instance, in the term “Prostate
Specific Antigen” the word “Prostate” appears less than 1,000 times in the dictionary. If the
ambiguous synonym “PSA” is encountered in text, and the word “Prostate” is also encountered,
the gene name is recognized.

Participation in the gene normalization task of the Biocreative 2 competition showed that this
approach leads to a precision of 75% and a recall of 76% when linking human gene mentions in
text to specific genes [5].

3.4 Statistical translation dictionary

The tagged corpus is used as a parallel corpus to create a statistical translation dictionary. The
dictionary consists of {conceptid, token, probability}-triples, indicating the probability that a par-
ticular token t denotes a particular biomedical concept c. The dictionary is created by tokenizing
the concept-tagged collection and by counting the assignment of a token to a concept. Figure 1
shows an example of tokenization and the assignment to concept ids.

The probability Pdict(t|c) is estimated as follows:

Pdict(t|c) =
freq(t, c)∑
t′ freq(t′, c)

,

6http://www.geneontology.org
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where freq(t, c) is the number of times a token in the tagged corpus is assigned to the concept c.
Figure 2 shows a partial entry list for the concept “TNF kappa B”.

Original Regulation by egr-1, c-jun and NFkB transcription factors.
Tokens regulation egr 1 egr1 c jun cjun nfkb transcript factor
Conceptid -1 2060534 2045920 2055956 -1 -1

Figure 1: Example of tokenizing a sentence and assigning concepts to them.

Token Count P (t|c)
tnf 122234 0.452
factor 43857 0.162
necrosi 42060 0.156
tumor 39467 0.146
alpha 8938 0.033
tumour 4417 0.016
factoralpha 3145 0.012
tnfalpha 2813 0.010
necrosis 1824 0.007
cachectin 493 0.002
tnfa 325 0.001
dif 305 0.001
tumournecrosi 130 0.0005
. . . . . . . . .

Figure 2: Dictionary entries for the concept “TNF kappa B” (partially shown)

The dictionary can be used to determine the ambiguity and specificity of a token for a particular
concept. How the dictionary is used is explained in section 4.1.

3.5 Span indexing

The preprocessed text collection is split into valid spans, as defined by the task. The spans are
treated as documents in a unigram index. For the tokenization we use the method evaluated by
Trieschnigg et al [7]. This method showed to improve document mean average precision with 27%
compared to a basic tokenizer on the 2006 topics.

The method works as follows:

• The input text is split on whitespace, the resulting strings are treated as a group:

– Extract tokens from the group consisting of either letters or digits.

– If more than one token was extracted from a group, add the concatenation of these
tokens as an additional compound token.

• For each obtained token: skip if it appears on a stopword list, do Porter stemming if the
token does not contain uppercase letters.

4 Online process

Figure 3 gives an overview of the online process.
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Figure 3: Overview of the online process

4.1 Query language model estimation and span retrieval

For the retrieval process, we use the topic description in two “languages”: Firstly, the original
topic description in English. Secondly, the topic description in biomedical “concept language” as
detected by the concept recognizer described in section 3.3. The topic description in “concept
language” is translated to English using the statistical translation dictionary. A method similar
to Xu [8] is used.

Our document retrieval is based on generative unigram language models. The language models
of the indexed documents (in our case valid spans from complete articles) are compared to the
language model of the query, and are ranked according to the likelihood of generating this query
model. Both document and query model, P (t|D) and P (t|Q) respectively, assign a probability to
the event of drawing a term t from it.

Our query model is a mixture of terms actually occurring in the original English query P (t|Qe),
and the terms which can be generated from a language model based on the conceptual represen-
tation of the query P (t|Qc). The mixture query model looks as follows:

P (t|Q) = αP (t|Qe) + (1− α)P (t|Qc), (1)

where α is a mixture parameter, in our experiments fixed to 0.7 based on previous experimental
results.

The English query model P (t|Qe) is simply estimated based on maximum likelihood:

PML(t|Qe) = tf(t,Qe)
|Qe| , (2)

where tf(t, Q) is the term frequency of the term t in the query Q and |Q| is the query length.
The conceptual query model P (t|Qc) is based on which terms are used to denote biomedical

concepts detected in the query:

P (t|Qc) =
∑
c∈Qc

P (c, t|Qc)

=
∑
c∈Qc

P (t|c,Qc)P (c|Qc)

where c ∈ Qc are the concepts detected in the query and P (c, t|Qc) is the probability that the
term t is used to denote concept c in the query context. We simplify our model by dropping this
dependence on the query context:

P (t|Qc) ≈
∑

c∈Qc
P (t|c)P (c|Qc),



where P (t|c) denotes the probability that a term t is used to represent concept c. We assume
P (c|Qc) is uniformly distributed and estimate P (t|c) using the dictionary:

PML(t|Qc) =
∑

c∈Qc

1
|Qc|Pdict(t|c).

The retrieval status value (RSV), the function used to score a (span-)document D for a query
Q, is defined as follows:

RSV (Q,D) =
∑
t∈Q

P (t|Q) log(1 +
λP (t|D)

(1− λ)P (t|C)
)

Where PML(t|D) =
tf(t,D)
|D|

PML(t|C) =
∑

D∈C tf(t,D)∑
D∈C |D|

P (t|Q) is the probability of a term t to occur in the query language model. P (t|D) is the
probability of a term being sampled from the document D, which is based on the maximum
likelihood estimate. P (t|C) is the probability of a term being sampled from the background
smoothing model C, which is based on maximum likelihood estimates on the collection. tf(t,D)
is the term frequency of a term in a document, i.e. the number of occurrences of the term in the
document. |D| denotes the document length, i.e. total number of tokens in the document. Finally,
λ is the Jelinek-Mercer smoothing parameter which sets the relative influence of the background
smoothing model. For more information see Hiemstra and Kraaij [1, 2].

4.2 Candidate entity selection and filtering

After retrieving a list of relevant spans, a number of possible answers is extracted. This is simply
done by filtering the concepts with the desired entity type from the best scoring spans. Initial
experiments with this approach showed that naively using these entities as candidate answers
resulted in too general answers. Therefore, we sort the answers by the log likelihood that an
entity in our list of relevant spans was not the result of drawing it from a random span in the
collection. Initially, we use the top 50 results from our retrieval run to find candidate answers. If
no candidate answers are found in this set, the next 50 results are considered repeatedly until at
least a single matching concept is found, however no more than a 1000 hits are considered.

5 Runs and results

We submitted two automatic runs EMCUT1 and EMCUT2. Run EMCUT1 aimed at achieving a high
aspect precision, by returning passages for different entities in a round-robin fashion. Run EMCUT2
simply returns the best scoring passages from each document, which do contain the requested
entity type. The results from the offical runs are displayed in table 2.

After the workshop we carried out a number of additional experiments. Figure 3 shows the
runs graphically, table 1 gives an overview of the results. The upper half of the table shows results
in which we do not carry out candidate entity selection and filtering (named ‘-filter’). In the lower
half of the table we do apply the approach described in section 4.2 (named ‘+filter’). As a baseline
we use the untranslated query model based on maximum likelihood (named ‘MLIR’), as described
in eq. 2. The CLIR system used the proposed mixture model based on both maximum likelihood
and concept-translation (eq. 1). The following subsections discuss the results.

5.1 Candidate selection and filtering

One would expect that candidate selection and filtering would improve precision at cost of recall: if
we detected that the passage contains the requested entity type, it’s more likely that it is relevant
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Figure 4: PR-curves of systems with (aspect/precision run) and without candidate selection and
filtering.

to our query. However, if we miss a requested entity type during concept detection we might
lose relevant answers as well. When we compare the upper half with the lower half of table 1,
the precision based measures indeed confirm an increase in initial precision: precision at 5 and
10 retrieved relevant documents show a steady improvement over all runs. The average precision
based measures show that especially the CLIR runs benefit from candidate selection and filtering.
Also see the PR-curves for the baseline (figure 4(a)) and CLIR runs (fig. 4(b)).

5.2 Concept cross translation

The numbers in table 1 show that the CLIR approach in general outperforms our baseline. Despite
the reasonable average percentual increase, most of the differences are not significant. Figure 5
shows the per topic difference in (document) average precision 7. For 13 topics, no difference
is witnessed because the concept recognizer did not detect any concepts, leading to no change
in the query model. When no candidate selection takes place (fig. 5(a)), more than half of the
affected topics is actually harmed by the cross language approach. On the other hand, a few topics
(especially topics 209 and 229) benefit strongly from the CLIR approach.

The runs which do candidate selection (fig. 5(b) and 5(c)) seem to benefit more from the CLIR
approach. Half of the topics shows an increase in average precision, the other half a decrease.
However, the increases are much more substantial than the decreases, leading to a higher mean
average precision.

We have compared the submitted runs (CLIR+filter) to its baseline (MLIR+filter) and inves-
tigated the differences for each topic. The runs using the concept language model often perform
better because the only concept recognised in the query is the most important part of the query,
and extra weight is given to this part. For instance, in topic 207, only the concept ‘etidronate’ is
found, so the search is biased towards this concept, leading to better results. However, sometimes
the concept found is not the most important part of the query. For instance, in topic 224 the
concept ‘lung cancer’ is detected, but ‘melanogenesis’ is not, even though this is an essential part
of the query. Consequently, the performance on this topic is drastically reduced by incorporating
the concept language model.

6 Conclusion

This year we approached TREC Genomics using a cross language IR (CLIR) techniques. Moreover,
we filtered the retrieved spans on the presence of the concept types requested by the query.

7Thanks to Edgar Meij for the script to generate them.
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Figure 5: Per topic difference in document average precision between CLIR and MLIR. Positive
differences (CLIR > MLIR) are shown above the x-axis. The labels show the topic numbers.

Without candidate entity selection (-filter)
Document measures Passage MAP Aspect

MAP P@5 P@10 Pass. Pass. 2 MAP
MLIR 0.210 0.394 0.358 0.045 0.046 0.121
CLIR 0.220 (4%) 0.389 (-1%) 0.375 (5%) 0.050 (11%) 0.053 (16%†) 0.113 (-7%‡)
With candidate entity selection (+filter)

Document measures Passage MAP Aspect
MAP P@5 P@10 Pass. Pass. 2 MAP

MLIR (precision) 0.218 0.439 0.392 0.067 0.033 0.150
CLIR (precision) EMCUT2 0.240 (10%†) 0.444 (1%) 0.425 (9%) 0.074 (10%) 0.038 (13%) 0.150 (-0%)
MLIR (aspect) 0.200 0.428 0.378 0.058 0.030 0.136
CLIR (aspect) EMCUT1 0.234 (17%) 0.467 (9%) 0.419 (11%) 0.069 (18%) 0.037 (23%) 0.153 (13%)

Table 1: Comparison of different retrieval systems. Between parentheses the change with the
system’s baseline (previous row); † and ‡ indicate a significant difference based on a Wilcoxon
signed-rank test (p < 0.05 and p < 0.005 respectively.
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Table 2: Performance scores for runs EMCUT1 and EMCUT2



On its own the CLIR approach gives varying results: some topics benefit from the reweighting of
important query terms and the expansion with tokens related to the detected biomedical concepts.
Other topics are actually harmed by the approach because the most important concepts were not
detected. In many cases no concepts were detected because we limited our concept detection to
concept types requested by the topics.

For the filtering we can say the same: on its own only the initial precision is improved by
filtering on requested concept type.

Interestingly, the combination of CLIR and filtering does show a clear improvement over the
baseline. Our hypothesis is that the filtering makes up for poor queries from the CLIR approach
and benefits from improved CLIR queries.

Future work will be to further examine the cross language approach to biomedical IR. We
expect better results when the initial concept recognition is more complete.
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