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Abstract

The amount of available information in digital news archives is growing
and scalable methods are sought for presenting this information in a user
friendly way. Grouping related news items in fuzzy hierarchies has this po-
tential, but the fully automated construction of these structures is complex.
Furthermore there is the difficulty of evaluating automatically generated
hierarchies of topics.

In this thesis is investigated how hierarchical topic detection (HTD) can aid
in the exploration and navigation of large news archives. The contribu-
tion of this work is a twofold. First of all a simple scalable HTD system is
presented for clustering a large collection of documents in a fuzzy hierar-
chical topic structure. The prototype system has been used in the trial HTD
evaluation of the TDT 2004 evaluation program. The participation starts a
discussion of the evaluation methodology of hierarchical topic structures in
an experimental context. The second contribution is a set of indicators and
a visualization method for evaluating a hierarchical topic structure given a
set of flat “truth” topics. With these indicators a richer discussion can take
place about the desired properties of cluster structures.
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Chapter 1
Introduction

1.1 Background

Information is one of the most important needs of human kind. With the
advent of the computer, databases and the Internet, more and more infor-
mation is available with a single mouse click. Storages can easily contain
hundreds of thousands documents, leaving the user with the problem of
finding interesting information.

Most Information Retrieval systems require a clearly defined information
need, expressed in some kind of query. This requires knowledge of the
information being accessed: which information is actually available and
what vocabulary is used to express this information?

Document clustering is based on the hypothesis that similar documents will
match the same information needs [vR79]. An even richer technique to or-
ganize information is a hierarchical structuring, in which clusters can be
hierarchically collected in supersets [AFB03]. By grouping related docu-
ments and presenting this categorization to the user, an overview can be
provided of the concealed information. This overview can help the user to
formulate a query expressing his or her information need adapted to the
collection.

1.2 Topic Detection and Tracking program

The onset of this work is participation in the Topic Detection and Track-
ing evaluation program. Main purpose of the TDT project is to “advance
the state of the art in identifying and following events being discussed in
multiple news sources” [NIS04].
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2 Introduction

Although the TDT program provides a definition (see page 21), it raises the
question what actually is a topic. A topic is an abstraction of what is dis-
cussed in one or more news items and its scope may be difficult to identify.
Imagine three news items about the launch, repair in space and return of
a particular space shuttle. Do the three news items belong to one and the
same topic? Or should these three events be treated as separated topics?
Or should all items be subsumed in a topic discussing the space program
in which this flight is scheduled? Topic detection is already a difficult task
without automating it. It makes the TDT evaluation program an even more
challenging task.

TDT is organized by The National Institute of Standards and Technology
(NIST) and participants include companies (e.g. Dragon, IBM) and research
institutes (e.g. Texas A&M University, University of Iowa, University of
Maryland). TNO has participated in the Topic Tracking evaluation of
TDT 2000 and 2001 [SK01].

The evaluation incorporates different tasks such as Story Segmentation,
Topic Tracking, Topic Detection, First Story Detection and Link Detection.
Hierarchical Topic Detection (HTD) is included as a trial evaluation in 2004.

Participants can take part in the evaluations after taking a dry run. This ini-
tial test has to prove if the participation is worthwhile. The corpus consists
of a large set of news sources, composed by the Linguistic Data Consor-
tium (LDC). The LDC also prepares the ground truth, manually annotated
meta data of the corpora. After distribution of the corpora the participants
have around one month to send in their results. The results are judged by
comparing the system structures to the ground truth. The yearly program
is concluded by a workshop where participants can present papers about
their systems [NIS04].

1.3 Problem identification

In this thesis hierarchical clustering methods are investigated to aid explo-
ration of an unlabelled document collection. Major difficulties are the for-
mulation of cluster structure requirements and corresponding evaluation
metric, the actual construction of the cluster structure and the final presen-
tation to the user.

First of all the formulation of cluster structure requirements and corre-
sponding metric is difficult. What defines a good cluster structure for ex-
ploring and navigating a large news archive? These requirements may
heavily depend on the purpose of the structure, which might be unclear.
Furthermore this presents the problem of capturing these requirements in
some metric or model in which structures can be evaluated and compared
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preferably across document collections and producing clustering methods.
In the case of TDT the hierarchical structure is compared to the ground
truth, in fact a flat cluster structure. Such an evaluation is less trivial than
it seems, which will be further explained in chapter 4.

Second the construction of a cluster structure for a document collection of
realistic size is problematic. Common cluster approaches with high time
and space complexities are not feasible for collections containing a few
hundred thousand documents. For example, a cluster method compar-
ing each document pair (quadratic complexity) in a collection of 500, 000
documents, would require almost two and a half trillion (249, 999, 500, 000)
comparisons. If one comparison would take one thousandth of a second,
this algorithm would run for almost 8 years! Therefore a scalable but still
effective solution should be searched.

Third there is the difficulty to overcome the information overload. Assum-
ing documents can be naturally grouped in topic clusters, a news archive
will typically consist of many unrelated topics. One way to overcome this
is to introduce higher levels of abstraction in the hierarchy, done from a cer-
tain viewpoint, but this might lead to an unnatural or undesired structure
for the user. The question remains how to present such a large number of
groups.

1.4 Goal, approach & research questions

The goal of this thesis is to investigate hierarchical topic detection in the
domain of large digital news archives to improve exploration and naviga-
tion.

The main research question is formulated as follows:

How can an automated Hierarchical Topic Detection system be
configured effectively to improve exploration and navigation of
news archives?

Bearing this question in mind was participated in the trial HTD task of
TDT 2004. The results from this participation influenced the subsequent
research.

The good evaluation results seemed in contrast with the intuitive quality of
the cluster structure. Instead of further optimizing the used cluster method
was decided to study the evaluation metric in more depth.

The following subquestions will be answered in this thesis:
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• How can a very large collection of news items be clustered effec-
tively?

• How can the quality of an hierarchical cluster structure be measured?

1.5 Thesis overview

The structure of this report is as follows. In the next chapter a general intro-
duction is given to understand the main concepts throughout this report.
Chapter 3 presents a prototype system for clustering a large document col-
lection. This system is used for participation in the HTD task of TDT 2004.
Chapter 4 discusses the metric used for evaluation of the HTD task and pro-
poses improvements for evaluating hierarchical topic structures. In Chap-
ter 5 these insights are used to reexamine the experiments carried out for
the prototype system. The main research questions and conclusions of this
thesis are discussed in Chapter 6.

In Appendix E a small demonstration is given how the constructed cluster
structures can be utilized. This is merely an onset for future work and
hopes to serve as an inspiration for further developments.



Chapter 2
Background

This chapter will serve as a background to understand the outline of this
report. It will start off with a short introduction to Information Retrieval.
In section 2.2 various document clustering techniques are described.

2.1 Information Retrieval

Retrieving information is as old as the hills. On one hand a lot of informa-
tion is produced, distributed and collected, on the other hand information
is sought after and consumed. The introduction of the computer has led
to questions how to automate the retrieval of information. This field of
computer science is called Information Retrieval.

Salton (1968) defines Information Retrieval in a very general way [Sal68]:

Definition. Information retrieval is a field concerned with the structure,
analysis, organization, storage, searching, and retrieval of information.

Van Rijsbergen (1979) describes in his book a typical IR system consisting of
three components: input (document collection and queries), output (search
results) and a processor [vR79]. The system preprocesses a collection of
documents from an information source and stores a representation which
allows searching. The system assumes the user is capable of expressing
his or her information need in the form of a query, for example keywords
describing the desired information. The system presents a list of retrieved
documents to the user, best matching the query. In an experimental system
the results can be used to evaluate the performance of the retrieval system.
Figure 2.1 displays a typical IR system.

5



6 Background

Figure 2.1: A typical IR system; adapated from van Rijsbergen [vR79].

2.1.1 Measuring performance

Performance of an IR system can be measured from different viewpoints,
e.g. the response time or the user friendliness of the system. It’s good to
have formal measures, although the original goal of building IR systems
should be kept in mind: building a good IR system is not the same as opti-
mizing for a limited metric.

Van Rijsbergen discusses two performance measures [vR79]: efficiency and
effectiveness.

Definition. Effectiveness is the ability of the system to retrieve relevant doc-
uments while at the same time holding back non-relevant one [vR79].

Definition. An efficient operation is the effective operation as measured by
a comparison of production with cost. [MW05].

The cost can be expressed in for example energy, time and money. Van
Rijsbergen notes efficiency is hard to measure in a machine independent
way.

Two ratios are often used to measure the effectiveness of an IR system: re-
call and precision. They assume a list of relevant documents is known for
a particular query, i.e. the desired list of documents for a particular query.
By comparing the relevant documents to the retrieved documents, the ef-
fectiveness can be measured. Figure 2.2 shows the relationship between
relevant and retrieved documents schematically. Table 2.1.1 shows the four
categories a document can belong to, given a particular query and retrieved
set of documents: it can either be relevant or non relevant to a particular
query and it can be retrieved by the IR system or not.

Definition. Recall is the ratio of the number of relevant documents re-
trieved to the total number of relevant documents [vR79].
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Is relevant?
yes no

Is retrieved? yes correct false alarm (false positive)
no miss (false negative) correct

Table 2.1: Contingency table

Figure 2.2: Relevant and retrieved documents

Recall gives an impression how complete the list of retrieved documents is.

Definition. Precision is the ratio of the number of relevant documents re-
trieved to the total number of documents retrieved [vR79].

Precision gives an impression how pure the list of retrieved documents is.

2.2 Document clustering

Clustering is the grouping of objects, or patterns, in such a way that objects
within groups are closely related and the relationship between objects in
different groups is weak. Willett (1988) points out the distinction between
clustering and classification. During classification objects are assigned to
clusters, in contrast to clustering where the number of clusters also needs to
be identified [Wil88]. The power of clustering lies in uncovering interesting
relationships within a set of unlabelled objects. Cluster analysis is applied
in various fields of science including biology, chemistry and data mining.

Van Rijsbergen’s cluster hypothesis underpins clustering in the context of
Information Retrieval [vR79]:

Closely associated documents tend to be relevant to the same
requests.

This hypothesis has been an inspiration for a lot of research to improve the
efficiency of IR systems using document clustering; by comparing a query
to representations of clusters instead of documents, less comparisons have
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to be made to find groups of related documents. This form of retrieval is
called clusterbased retrieval. Furthermore has been argued clustering can im-
prove the effectiveness of IR systems [Wil88]. If a cluster is relevant for a
particular query, not all the documents in this cluster have to be explicitly
related to the query, although the user might be interested in these docu-
ments as well.

If a cluster method is actually effective depends on the collection being
processed. Van Rijsbergen [vR79], Voorhees [Voo85] and El-Hamdouchi
[EHW87] presented methods to find out if a particular document collection
has a clustering tendency: these measures give an indication if the docu-
ment collection has features which allow clustering.

Document clustering can either be done offline or online. During offline clus-
tering, the document collection is clustered as a whole. Online clustering is
done by grouping the results realtime; after retrieving related documents to
a query this selection of the document collection is clustered. Especially on-
line clustering has received increasing attention recently, as new personal
computers with increased computing speed better allow on the fly cluster-
ing.

Jain et al describe the following important aspects of a clustering task [JMF99]:

• Defining a format and extraction method to derive object representa-
tions or patterns;

• Defining a measurement to calculate the distance between object rep-
resentations;

• Defining a method to group object representations in a cluster struc-
ture;

• Optionally defining a method to abstract information from the clus-
ters, e.g. giving the clusters a label;

• Defining a method to evaluate the output structure.

Jain points out that these steps have to be adapted to the working domain.
In the domain of document clustering characteristic about the document
representation is its high dimensionality [JMF99, Sal91], i.e. usually many
different features (e.g. terms) are needed to describe a document within
a document collection. This high dimensionality of the patterns strongly
influences the options for the other aspects.

In the following sections these aspects will be further explained in the con-
text of document clustering.
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2.2.1 Document representation

Before clustering can take place a suitable representation or pattern has to
be chosen for the documents.

The most common approach is to represent a document as a bag of words.
This representation is cheap to store and allows fast and simple (compari-
son) operations between documents while at the same time it is effective in
representing the original document [Sal91]. To obtain this representation,
punctuation is removed from the document text and character sequences
which do not contain white space are treated as terms. A document is rep-
resented by a list of terms and occurrence frequency, called a term-frequency
vector. Another important value is the number of documents a term oc-
curs in, called the document frequency of a term. The term frequency repre-
sents the local importance, i.e. the importance in the document. The doc-
ument frequency can be used to calculate the inverse document frequency
(log(n/df), where n denotes the document collection size and df the docu-
ment frequency of a particular term), which indicates the global importance
of a term.

Different operations can be applied to the term frequency vector, to de-
crease required storage and to join identical terms (which might be called a
cluster operation on its own). To mention a few:

• Converting all the terms to lowercase. Capitalized words at the be-
ginning of a sentence are treated identical as the same words in the
middle of a sentence.

• Stemming of terms. Terms are treated by their root form, e.g. “trav-
eling” and “travelled” have the same root “travel”. A well-known
algorithm is Porter’s stemming algorithm [FBY92] which uses plu-
ral removal and finds morphological variations. Erroneously the lan-
guage dependent operation might stem “university” and “universe”
to the same root as well (“univers” in the case of Porter’s algorithm).

• Removing stop words. Stop words are words which occur often and
don’t have information value, e.g. “a”, “the”, “have” etc. Further-
more words can be removed which occur very infrequently as they
will not be used in queries or do not co-occur in multiple documents
(which makes these terms less useful for clustering).

It should be stressed that choosing a particular representation has a strong
impact on the performance of an IR system. During this step a model is cre-
ated of a document. This abstraction enables calculations and comparisons,
but a lot of the original context is thrown away.
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Figure 2.31 shows how an excerpt of text is processed to its final represen-
tation after removal of stopwords and stemming. Note that the stemmed
term “appl” represents two different but related concepts from the original
text: the talking apple tree and the apples which grew from it.

Figure 2.3: From original document to document representation

2.2.2 Calculating document distances

It seems intuitively clear that for clustering a measurement is needed to
compare documents. This distance metric should give an indication if a
document is more similar to one document than to another. Calculating
this similarity is strongly related to the document representation discussed
before.

Using the previously described representation, a trivial measurement could
be the number of co-occurring terms in two documents. The more identi-
cal terms occur in two documents, the higher the similarity between those
documents. Such a measurement would not work for documents of dif-
ferent sizes however: larger documents containing more terms, will have
more identical terms than smaller documents. In some way normalization
should take place to prevent this.

Two often used similarity measurements which incorporate normalization
are the dice and cosine similarity measures. The similarity between two doc-
uments d1 and d2 is defined as follows:

1Excerpt from The Wizard of Oz by L Frank Baum.
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Dice(D1, D2) =
2 · |D1 ∩D2|
|D1|+ |D2|

(2.1)

Cosine(D1, D2) =
|D1 ∩D2|√
|D1| · |D2|

(2.2)

Where D1 and D2 are the terms of document d1 and d2 respectively.

Note that both similarity measurements are symmetric. Similarity mea-
surements can also be asymmetric: the measurement then indicates the re-
semblance of a document using the features of another document as start-
ing point.

Term weighting can be applied to emphasize the importance of certain
terms; the measures can also incorporate this. For more information see
any text book on Information Retrieval, e.g. from Baeza-Yates and Ribeiro-
Neto [BYRN99].

2.2.3 Clustering methods

Using the distance metric and a set of documents (a set of representations
to be more precise) the actual clustering process can take place. The cluster
method describes the steps to build the cluster structure.

The resulting cluster structure can be a flat or hierarchical representation of
the document set. In a flat cluster structure there is no relationship between
the clusters; each cluster is an independent group of documents. In a hi-
erarchical structure, there can be a relationship between clusters; a cluster
can be composed of documents as well as clusters.

A cluster structure can be either hard or fuzzy. In a hard cluster structure a
document can only be assigned to one cluster. In a fuzzy cluster structure
a document can be part of multiple unrelated clusters. In a fuzzy structure
documents are often assigned to clusters to a certain degree.

In the following sections a number of classical clustering approaches are
discussed. In the last section a few hybrid methods are briefly mentioned,
which combine several cluster methods or introduce new approaches.

K-means clustering

McQueen introduces in 1967 the K-means clustering algorithm [JMF99]. K-
means clustering is a flat clustering method, with the goal of partitioning
the document collection in k clusters, where there is little similarity across
clusters, but great similarity within a cluster.



12 Background

The method is as follows:

1. k random document patterns are chosen as initial centroids, each cen-
troid represents the centre of a cluster.

2. The document patterns are assigned to the cluster of the closest cen-
troid.

3. For each formed cluster the document pattern which is in the centre
is assigned as new centroid of that cluster.

4. Step 2 and 3 are repeated until some kind of convergence criterion is
met, e.g. no or little patterns are reallocated anymore.

Advantages:

• K-means is simple to implement and has a linear time complexity,
O(n) where n is the number of documents.

Disadvantages:

• The number of clusters k has to be determined beforehand.

• The resulting structure is sensitive to the inital centroids, this makes
the result not deterministic.

A variant of K-means is K-medioid, which uses artificial document patterns
as centres representing clusters (at step 3 of the algorithm). Other resem-
bling methods have tried to optimize finding the initial centroids, or allow
splitting of clusters with a high variance and merging of clusters having
close centroids [JMF99].

Hierarchical agglomerative clustering

As the name implies, hierarchical agglomerative clustering (HAC) creates
a hierarchical structure. To be more specific, it creates a dendrogram by itera-
tively merging the two most similar clusters until one root cluster remains.

The method is as follows:

1. A distance matrix is created, in which the distances between all doc-
ument pairs are stored. The documents are viewed as singleton clus-
ters.

2. The most similar clusters are joined in a new cluster.
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3. The distances between this newly created cluster and all the remain-
ing clusters are calculated.

4. Step 2 and 3 are repeated until a single, root cluster remains.

The result is a binary tree containing clusters as nodes and singleton clus-
ters (containing one document) as leafs. In the worst case the depth of this
tree equals the number of documents minus one; in this case the structure
looks like a chain of singleton clusters (see figure 2.4). The smallest depth
is achieved having a fully balanced tree with depth dlog2 ne, with n the
number of documents.

Figure 2.4: Chaining of document clusters

For calculating the distances between newly formed clusters and existing
clusters(step 3), three methods are widely used:

Single link also known as nearest neighbour. The distance between the
new cluster and the existing cluster is the minimum of the distances
between the existing cluster and one of the joined clusters. The re-
sulting cluster structure tends to suffer from the previously described
chaining effect [Wil88].

Complete link also known as furthest neighbour. The distance between
the new cluster and the existing cluster is the maximum of the dis-
tances between the existing cluster and one of the joined clusters. The
resulting cluster structure tends to contain small compact groups of
clusters [JMF99].

Group average link The distance between the new cluster and the existing
cluster is the average of the distances between the existing cluster and
the joined clusters.

Figure 2.5 shows these distance measures graphically.

Figure 2.6 shows an example of hierarchical clustering.

Advantages of HAC:

• The resulting cluster structure is deterministic. Processing a collec-
tion will always produce the same result.
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Figure 2.5: Calculation of the distance between a new cluster (C joining
cluster A and B) and an existing cluster (X) using single, complete and
average link methods.

Disadvantages of HAC:

• The time and space complexity of HAC methods in general is O(N3)
in time and O(N2) in space. This makes the method not scalable for
large document collections [EHW86].

A well-known variation on HAC is Ward’s method, also known as min-
imum variance method [EHW86, FBY92]. At each step of the clustering
process, the pair of clusters is merged whose merger minimizes the increase
of within-group distances. Ward’s method does not outperform other HAC
methods in complexity however.

Bisecting K-means

Although the name is a little confusing the bisecting K-means algorithm
actually is a divisive hard hierarchical cluster method. Research has shown
it produces better results than the basic K-means algorithm described be-
fore [SKK00]. Again the goal is to partition the collection in k clusters.

The method is as follows:

1. Put the complete document collection in a single cluster.

2. Pick a cluster to split, e.g. the largest cluster.

3. Use the basic K-means algorithm to find two subclusters (bisecting
step).

4. (Optional to increase performance) Repeat step 3 a number of times
and take the best two subclusters.

5. Repeat step 2, 3 and 4 until k leaf clusters are created.
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Figure 2.6: Hierarchical clustering 4 documents using complete linkage.

advantages:

• The method has logarithmic time complexity (O(log(n))).

disadvantages:

• The cluster structure is not deterministic because of its dependence
on random initial centers.

Adaptations

As became clear, an important problem of clustering is the friction between
robustness and effectiveness on one hand and efficiency on the other. Hier-
archical agglomerative clustering techniques do seem to produce effective
clusters [Wil88], but simply are not feasible for large collections. On the
other hand, K-means can produce cluster structures with a low computa-
tional cost, but tends to give varying results. Various hybrid adaptations
have been developed to bundle the advantages and overcome the draw-
backs, sometimes presenting additional steps in the process. Three meth-
ods are typically used to enable application of complex algorithms on large
datasets: sampling, summarizing and partitioning [DL01]. In the following
sections a few adaptations will are discussed.
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Hearst and Pedersen introduced Scatter/Gather, a cluster-based document
browsing method which uses a linear cluster algorithm for online docu-
ment clustering [HP96, CKPT92]. They claim it presents a compact list of
topically-coherent groups, labelled with topical terms which characterize
these clusters. The user can select (gather) a few clusters of interest and the
system presents a new list of clusters scattering the previous selection on-
the-fly. Hearst and Pedersen present two algorithms, Buckshot and Frac-
tionation, which help in determining the k initial centres used for K-means
clustering. Buckshot uses another (possibly slow) clustering algorithm on
a sample of the document collection, to find the centroids. By taking a sam-
ple of size

√
kn (with k the number of clusters and n the number of doc-

uments) and with a quadratic clustering algorithm, this approach is linear
for the number of documents. Fractionation divides the document collec-
tion in a number of buckets of m documents. Another cluster routine is
applied to each bucket to find a number (< m) of document representa-
tions. These document representations are collected and divided into new
buckets (again each containing m document representations) and the pro-
cess is repeated until k document representations remain [CKPT92]. Pirolli
et al evaluated Scatter/Gather and concluded it does not improve locating
specific documents, but it does help in understanding the topic structure of
the document collection [PSHD96].

Zhang, Ramakrishnan and Livny presented BIRCH as a clustering method
for large databases, not particularly with the goal of document cluster-
ing [ZRL96]. This is done by compressing the information of data pat-
terns in Clustering Features (CF), which contain the statistics of a selection of
closely related data patterns. The clustering features are stored in a cluster-
ing feature tree, which can be constructed by a single scan of the collection
of patterns (documents). The Clustering Features stored as leafs of this tree
can be further processed using an arbitrary clustering algorithm. Further-
more the tree can be used to detect and remove outliers, patterns which
are not closely related to any other pattern. The resulting clustering feature
tree is influenced by the order in which patterns are processed, but by post
processing this influence can be decreased is argued by the creators. Wong
and Fu adapt this method for document clustering, introducing a docu-
ment feature similar used to the cluster feature used in BIRCH [WF00].
Both systems require setting a number of parameters, influencing running
time and clustering results. The values of these parameters are chosen ex-
perimentally.

Pantel and Lin introduce document clustering with committees, which is a
variant on K-means clustering [PL02]. The method calculates the centroid
of the cluster by averaging a tight subset of the document representations
in a cluster. They explicitly argue against monothetic clustering: ”Using a
single representative from a cluster may be problematic too because each
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individual element has its own idiosyncrasies that may not be shared by
other members of the cluster”.

Sanderson derives concept hierarchies from text by using term co-occur-
rence [SC99]. He prefers using a monothetic clustering method instead of
a polythetic clustering one, as used in for example Scatter/Gather. In poly-
thetic clustering the relationship between documents in clusters is based
on multiple terms, whereas in monothetic clustering only one term is used.
He argues that polythetic clustering does not bring clarity to the user when
presenting labels of clusters containing multiple keywords. By discovering
term relationships (one subsumes the other), a hierarchy of terms is created.

2.2.4 Cluster structure evaluation

Created cluster structures can be evaluated to compare the performance of
different cluster methods or to compare the cluster performance of a partic-
ular method on two different document collections. The focus of this evalu-
ation again will be on the effectiveness (see 2.1.1) of the resulting structure.

The effectiveness of a cluster method is usually measured using a ground
truth. A ground truth is a manually composed cluster structure. The doc-
ument collection may be partially annotated: in this case the ground truth
does not completely cover the collection. A common approach is to find
for each cluster in the ground truth a cluster in the system structure and to
calculate its precision and recall.

The evaluation method depends on the cluster structure of both the system
cluster and ground truth structure. A highly fuzzy cluster structure re-
quires a different approach than a hard partitioned set of clusters. Another
aspect is the difference in granularity, i.e. level of detail of the structure,
between system en truth cluster structure. It’s difficult to create a mapping
between system and truth clusters if they are of different size and there is
no information about relationships between system or truth clusters.

In chapter 4 a metric for evaluating hierarchical cluster structures with a
flat ground truth will be discussed.

2.3 Conclusion

In this chapter a theoretical background has been provided for this report.
It can be concluded that many document clustering methods have been
developed through the years, usually balancing between efficiency and ef-
fectiveness. The evaluation of the resulting cluster structures is dependent
on the type of structure.
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Chapter 3
Prototype

This chapter describes the prototype developed to participate in the TDT 2004.
The first section discusses the Hierarchical Topic Detection task and eval-
uation methodology of the TDT evaluation study. The second section de-
scribes the design of the prototype system, followed by a description of the
experiments carried out with this prototype system. Section 3.4 discusses
the results of carrying out these experiments and is followed by a conclu-
sion.

3.1 TDT evaluation study

The Topic Detection and Tracking (TDT) project is an annually held evalu-
ation study in the field of TDT organized by the National Institute of Stan-
dards and Technology (NIST).

3.1.1 Hierarchical Topic Detection Task

TDT has included a Topic Detection task since its inception in 1996. In this
task systems are required to organize news stories in clusters, correspond-
ing to the topics discussed. The result can be regarded as a partition of the
corpus, in which each news item is assigned to one and only one partition
representing a topic.

The Task Definition and Evaluation Plan of TDT 2004 [NIS04] mentions two
reasons for introducing a new Hierarchical Topic Detection task:

• A flat partitioned structure does not allow a single news item to be-
long to multiple topics.

19
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• A flat structure does not allow multiple levels of granularity, i.e. top-
ics cannot be described at various levels of detail.

The new HTD task enables stories to be assigned to multiple clusters. Fur-
thermore clusters may be a subset of, or overlap with other clusters. The
resulting structure must be characterizable as a directed acyclic graph (DAG)
with a single root node. The root node represents the complete document
collection whereas child clusters further down the DAG represent finer
grained topics. For this initial trial evaluation, the task simplifies treatment
of time: the task is treated as retrospective search, i.e. the documents may
be processed in any order, in contrast to the old task in which the items
should be processed in the order they were published [NIS04].

Figure 3.1 shows a cluster structure of a very small dataset containing five
documents. The root node contains all documents (note that no documents
are directly attached) and the clusters below the root (named A and C)
each contain a subset from the document collection. Notice the overlap
between the clusters A and B (fuzzy clustering) and the different levels of
granularity between for example clusters B and C.

Figure 3.1: Example cluster structure (directed acyclic graph) of five docu-
ments.

3.1.2 Corpus

The collection of stories is provided by the Linguistic Data Consortium
(LDC) and contains collections of news from a number of sources and lan-
guages. The TDT 5 corpus used for the TDT 2004 contains English, Man-
darin and Arabic data. The non-English sources are also available in ma-
chine translated English. The total corpus consists of around 400,000 docu-
ments, of which around 280,000 in native English. Participants for the HTD
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task are required to send in a cluster structure of the English only data and
a structure of the complete corpus, constructed by either using the machine
translated or original sources.

3.1.3 Ground truth

The systems are scored by comparing the system result to a manually com-
posed ground truth. The cost of a (cluster) structure defines the “distance”
to the ground truth; a better structure has a lower cost. The ground truth is
composed by annotators of the Linguistic Data Consortium and consists of
manually labelled clusters containing news stories discussing a particular
topic. A topic is defined as follows:

Definition. A topic is an event or activity, along with all directly related
events and activities [Lin04].

The topics are selected from a random sample of documents from the cor-
pus. The annotation is search guided, i.e. the related stories are found using
a search engine. Furthermore the annotation for the most recently pub-
lished TDT 5 corpus is incomplete, that is, there will be no guarantee that
every story on each topic will have been located [Lin04]: The search for
stories related to one particular topic is ceased after 3 hours, in contrast
to previous annotations where the annotators decided when all on-topic
stories were found.

3.1.4 Evaluation metric

The metric used for the old Topic Detection task [FD02] is not suitable for
this new hierarchical task. Allan et al [AFB03] discuss various methods for
evaluating hierarchical cluster structures. The TDT 2004 HTD task is eval-
uated by using the minimal cost method described in Allan et al’s paper.

The minimal cost metric finds for each annotated topic the system’s optimal
cluster, having the lowest cost. This cost consists of two component:

• A detection cost related to the contents of the cluster and

• a travel cost related to the effort to find the cluster.

The detection cost is the same as for previous topic detection tasks and
consists of a penalty for false alarms and misses, misses have more impact
than false alarms however (see section 2.1.1). The travel cost has been in-
troduced to penalize “powerset” cluster structures, i.e. structures having
clusters containing all possible combinations of document sets. The travel
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cost of a cluster is, independent of its content, related to the shortest path
to this cluster from the structure’s root cluster. The number of encountered
branches and the length of the path are the major components in the travel
cost calculation, representing the number of choices a user has to make and
the number of cluster titles a user has to read to find the best matching clus-
ter. The score function is parametrized, i.e. the impact of the various cost
components is controlled by parameters.

3.1.5 Formal domain definitions

Before we discuss how to calculate the minimal cost metric, a more formal
definition of the domain is presented.

Assume a document collection D consists of n documents, d1 to dn. For this
document collection we have a ground truth G, which is a set of g topics t1
to tg. Each topic is a subset of documents from D:

∀t ∈ G • t ⊆ D

The ground truth may be incomplete, i.e. the topics might not cover all
documents in D: ⋃

t∈G

t ⊆ D

A system cluster structure S is a directed acyclic graph, which is repre-
sented as a pair of clusters V and edges E. V is a set of v clusters, c1 to
cv. The edges E are a set of e tuples in the form (cp, cc), where cp and cc

are both clusters in V . The tuple represents a parent-child relationship be-
tween the clusters cp and cc respectively. A cluster cannot be a child of itself
(the relationship is not reflexive).

S = (V,E)
V = {c1, c2, . . . , cv}
E = {(cp1 , cc1), (cp2 , cc2), . . . , (cpe , cce)}

The parents and children of a cluster x are defined as follows:

P (x) = {p | (p, x) ∈ E}
C(x) = {c | (x, c) ∈ E}

A cluster path of length p (p > 1) is defined as a series of p + 1 (connected)
clusters (c1, c2, . . . , cp+1), where for each sequence of two clusters ck and
ck+1 holds that the tupel (ck, ck+1) is an edge in V . (c1 ⇒ c2) denotes a
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cluster path between cluster c1 and cluster c2. The set P denotes all the
possible paths in the cluster structure. The cluster structure is acyclic, i.e.
there is no cluster path between a cluster and itself.

There is one root cluster cr, which is the “top” of the cluster structure. This
root cluster is no child of any other cluster and there is a path to all other
clusters from this root cluster.

The offspring of a cluster c is defined as all the clusters which can be reached
from c:

O(c) = {cc | (c ⇒ cc) ∈ P}

A cluster c has a set of directly contained documents Dc. The documents of
a cluster c, D∗(c), are defined as the directly contained documents of this
cluster and the directly contained documents of all of its offspring clusters:

D∗(c) = dc ∪
⋃

i∈O(c)

Di

3.1.6 Minimal cost (the math)

The minimum cost Cmin can be calculated for a certain cluster c and topic t.
A lower value indicates a better performance. It is a linear combination of
normalized detection cost (C*

d) and normalized travel cost (C*
t ):

Cmin(c, t) = WDET ·C*
d(c, t) +

(1− WDET) · C*
t (cr ⇒ c)

WDET (0 ≤ WDET ≤ 1) is a constant which sets the relative impact of detec-
tion and travel cost.

In the following sections the detection cost and travel cost are discussed.

Detection cost

The detection cost penalizes false alarms and misses and is defined as fol-
lows for a particular cluster c and topic t:

Cd(c, t) = Pmiss(c, t) · Prelevant · CMISS +
Pfa(c, t) · Pnonrelevant · CFA

Pmiss(c, t) =
|t\D∗(c)|

|t|

Pfa(c, t) =
|D∗(c)\t|
|D\t|
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Where:

• |X| is the size of the set X .

• u\v is the set u excluding the elements in v.

• Pmiss and Pfa are the probabilities of a missed detection and a false
alarm respectively when comparing a cluster to a ground truth topic.

• CMISS and CFA are the costs of a missed detection and a false alarm
respectively.

• Prelevant is the a priori probability of finding a relevant document
(Pnonrelevant = 1 − Prelevant). This is to compensate for the typical
small value of Pmiss and large value of Pfa, if the average size of a
topic is relatively small compared to the size of the total document
collection [FD02]. The values of these constants are predetermined
for a particular corpus.

Normalization of the detection cost is done by dividing by the minimum
of costs if all documents are judged on-topic (Pnonrelevant · CFA) or off-topic
(Prelevant · CMISS). The goal of this normalization is to ground the perfor-
mance to a more meaningful range [FD02]:

C*
d(c, t) =

Cd(c, t)
min(Prelevant · CMISS,Pnonrelevant · CFA)

Travel cost

The encountered branches on a path, eb(cfrom ⇒ cto), are defined as fol-
lows:

eb(cfrom ⇒ cto) = eb((c1, c2, . . . , cn))

=
∑

i=1..n−1

|C(ci)|

Where |C(c)| are the number of children of cluster c.

The travel cost Ct consists of a cost for the number of encountered branches
and encountered titles when traversing to a cluster c from the root cluster
cr.

Ct(cr ⇒ c) = eb(cr ⇒ c) · CBRANCH + |cr ⇒ c| · CTITLE

Where:
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• cr ⇒ c is a path from the root cluster to cluster c. This path can be
seen as a series of clusters (c1, c2, . . . , cn) with c1 = cr and cn = c.

• |cp ⇒ cc| is the length of the path from cp to cc.

• CBRANCH is the cost for “encountering” a branch.

• CTITLE is the cost for “reading” a title.

Normalizing is done by dividing by the expected travelcost in an optimally
balanced tree, using an optimal (preferred) branching factor:

C*
t (cr ⇒ c) =

Ct(cr ⇒ c)(
EXPDEPTH · OPTBRANCH · CBRANCH +

EXPDEPTH · CTITLE

)
EXPDEPTH = dlogOPTBRANCH ne

Where

• OPTBRANCH is the optimal branching factor, i.e. the optimal number
of child clusters a cluster has. For the HTD task of TDT 2004 this
value is 3.

• EXPDEPTH is the expected depth of the balanced tree with as many
leaves as the size of the document collection with branching factor of
OPTBRANCH.

The evaluation algorithm carries out a top-down tree search to find the best
cluster for each ground truth topic. As only the best cluster is required, a
trimming algorithm can be used: if the cost of a particular branch cannot
generate a better result than the current optimal value, that branch can be
trimmed and excluded from further search [AFB03].

The metric and its algorithm are more thoroughly described in Allan et
al’s paper [AFB03], the TDT evaluation plan [NIS04] and a paper from Fis-
cus [FD02].

3.2 Design

An attempt is made to adapt a common hierarchical agglomerative clus-
tering method for the large TDT dataset consisting of almost 400,000 docu-
ments.

The approach is as follows: take a sample small enough so it can still be
clustered using hierarchical agglomerative clustering, cluster it and assign
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the remaining documents to the best matching clusters. Figure 3.2 shows
this approach schematically.

The steps are explained in the following sections.

3.2.1 Sampling

The first step is to take a random sample from the corpus. The size of this
sample is 20,000 documents, its corresponding distance matrix requires an
acceptable 800 megabytes of working memory1.

3.2.2 Clustering

The second step is to build a hierarchical cluster structure. Starting point
for the clustering method is the cross-entropy reduction scoring function
[Kra04]. Suppose we have two documents D1 and D2. Both documents are
represented by simple unigram language models MD1 and MD2 , a refer-
ence unigram model for general English MC is estimated on the complete
document collection. Now the cross-entropy reduction (CER) of MD1 and
MD2 compared to MC is defined as:

CER(D1;C,D2) = H(D1, C)−H(D1, D2) (3.1)

=
n∑

i=1

P (τi|MD1) log
P (τi|MD2)
P (τi|MC)

=
n∑

i=1

c(D1, τi)∑
i c(D1, τi)

log
(1− λ)P (τi|D2) + λP (τi|C)

P (τi|C)

Where:

• τi is an index term.

• n is the number of unique index terms in C.

• c(X, τ) is the term frequency of term τ in language model X .

• λ is a smoothing parameter.

• H(X, Y ) is the cross-entropy between two language models X and
Y .

14 bytes (typical implementation of a floating point value) per comparison in a symmet-
ric matrix
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The generative document model MD2 is smoothed by linear interpolation
with the background model MC [SK02]. Normalization of scores (by sub-
tracting H(D1, C)) is essential for adequate performance.

For more information about the cross-entropy scoring function is referred
to Kraaij’s PhD thesis [Kra04].

The symmetrical version of this scoring function is defined as

sim(D1, D2) =
CER(D1;C,D2) + CER(D2;C,D1)

2
(3.2)

A distance matrix is filled using this symmetrical scoring function. For the
actual clustering 3 basic hierarchic agglomerative clustering methods are
used: single, complete and average pairwise linkage (see section 2.2.3).

3.2.3 Optimizing

The result of this clustering process is a, usually unbalanced, binary tree. A
skewed cluster, i.e. a cluster which has child clusters containing an unequal
number of documents, adds extra travel cost to all of the clusters below this
cluster, especially if this cluster is near the root of the tree. Relating to the
real world, the ‘user’ should consider more branches and titles to find clus-
ters. A more balanced tree will reduce the expected travel cost, but how
can the structure be rebalanced without losing clustering information? The
metric is used to indicate if the changes to the tree have thrown away clus-
tering information: if after rebalancing the detection cost for any ‘optimal’
cluster grows, the rebalancing has thrown away valuable information from
the original structure. The detection cost should remain the same and the
travel cost should decrease.

The method used for rebalancing the tree, without large changes to the
optimal clusters, is simple. First the clusters are removed which have no
documents directly2 attached and have a dissimilarity higher or equal to
a certain threshold. A group of unconnected clusters now remains. These
clusters are used to form a better balanced tree with a branching factor of
three, suiting the HTD evaluation metric preferring tertiary or quadruple
trees[NIS04]. This is done by recursively taking the smallest three (or four)
clusters to form a new cluster, until only one root cluster remains.

Figures 3.3(a) and 3.3(b) show the impact of the rebranching operation on a
cluster structure of 100 documents. The black squares in the bottom of the
visualization represent documents, the rectangles represent clusters group-
ing documents and clusters. The marked clusters in the first figure will be
removed: their dissimilarity is higher than or equal to the chosen threshold

2a directly attached document only appears in this cluster and not in child clusters
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and they don’t directly contain documents. After removing these clusters
and corresponding edges, a group of small cluster branches remains. The
second figure shows the result of building a more balanced tree with these
small branches. The marked clusters now represent newly added clusters.
Note the newly added clusters have a branching factor of three and the
existing clusters have a branching factor of two.

3.2.4 Merging

An index is built from the sample document set. The documents from the
corpus which are not in the sample are used as queries on this index re-
turning the best document-likelihood matches. For each document in this
complement dataset the best 10 matches are used for merging. The com-
plement document is added to all of the matching documents’ clusters.

The new documents which don’t have any matching documents are col-
lected in one cluster. This ensures new documents are assigned to at least
one cluster.

The result of the merging process is a so called fuzzy cluster structure: a
single document can belong to multiple clusters.

3.3 Experiments

Experiments were carried out using the English sources from the TDT 3
corpus as a preparation for participation in the trial HTD task of TDT 2004.
The size of this dataset is around 35,000 documents, roughly one tenth of
the TDT 5 dataset. As a sample we took 10,000 documents from the TDT 3
corpus.

For this set of sample documents a symmetric distance matrix was created,
filled with the dissimilarity between each document pair. Using this matrix
a cluster structure was built using single, complete and average link meth-
ods. The sample structure was scored using the minimal cost metric and
TDT 3 ground truth containing 160 topics. Based on the bad results for sin-
gle linkage was decided to exclude this method from further experiments.

Experiments were carried out with rebranching, varying the cut threshold
(0, 0.90, 0.95, 0.96, 0.97 and 0.98) and varying the number of branches (3 and
4) to use when reconstructing the tree. Furthermore experiments were car-
ried out applying rebranching before and after the merging process. Other
tree simplifying operations were studied, also changing the structure in the
lower parts of tree, but these resulted in similar or worse evaluation results
and are not further discussed.
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Table 3.1: Comparison of clustering methods
Method Minimum

cost
Detection
cost

Norm.
det. cost

Travel
cost

Norm.
travel
cost

Depth

Average link 0.2747 0.0074 0.3722 58.4 0.0855 11.68
Complete link 0.6120 0.0176 0.8778 65.7 0.0962 13.14
Single link 0.6970 0.02 1.0003 74.0 0.1084 24

The documents in the complement dataset were used as queries for the
built sample index. The 20 best matching documents from the sample were
searched, using document likelihood. The new documents were assigned
to the clusters to which the best matching documents from the sample be-
long. Two methods were used:

• Adding the new document to the first n (1, 10, 20) matching clusters.

• Adding the new document to the first matching cluster and to to all
matching clusters having a document likelihood higher than a certain
threshold (0.5, 1, 2)

The minimal cost was calculated over all of the generated cluster structures,
including structures only containing sample documents.

The configuration with optimal result for the TDT 3 test collection was
used for the TDT 2004 participation. This was constructing a sample clus-
ter structure using average pairwise link for 20,000 documents, applying a
rebranch with branching factor 3 and cut threshold 0.96 and finally adding
the remaining documents to the clusters of the 10 best matching sample
documents. Creating the cluster structure of the TDT 5 corpus took around
one complete day of processing time on a 900 Mhz machine having 2 Gb of
working memory.

3.4 Discussion

In this section the most interesting results from the experiments and partic-
ipation in TDT 2004 are discussed.

3.4.1 Linkage method

First of all the choice of linkage method is discussed. The sample TDT 3
dataset was clustered using complete, average and single linkage methods.
For each of the topics in the ground truth, the best cluster, i.e. the cluster
having the minimum cost, was calculated. The rows in table 3.1 show the
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average characteristics of these best clusters. Without rebranching aver-
age pairwise linkage gave the best results by far. Average pairwise linkage
scored 55% lower than complete linkage and 71% lower than single linkage
clustering methods.

Further investigation showed that single linkage, as expected, performed
bad because of its chaining behaviour [JMF99, SBCQ98]. A smaller sample
of 100 documents was taken, clustered using single linkage and visualized
in a tree (figure 3.4). The figure shows how, especially in the upper part
of the tree, new clusters are created by merging an existing cluster and a
single document cluster. As a result, the travel cost to reach a more mean-
ingful cluster, i.e. a cluster more closely resembling topics from the ground
truth residing at the bottom of the structure, is very high. The travel cost
overshadows the detection cost in such a way that the cluster having the
lowest overall cost (consisting of travel cost and detection cost) is in the
upper part of the structure, although its detection cost is much higher.

The visualization of a cluster structure with 100 documents obtained by
using complete linkage (figure 3.5) does not clearly show any chaining be-
haviour. However, details of the experiment outcome showed that a few
clusters were chosen frequently as best matching cluster for a topic, just
like the single link cluster structure. A screen shot of a cluster structure
browser (Figure 3.6) shows the complete linkage structure also suffers from
some kind of “chaining” behaviour. At the root the document set is divided
in two clusters: one tight, relatively small cluster with a dissimilarity little
less than 1, and one large cluster with a dissimilarity equal to 1. The large
cluster is again divided in one small cluster and one large cluster. This
continues downwards the tree. The visualization of the structure of 100
documents did not show this behaviour, simply because the dataset is too
small. The result, just like the single linkage structure, does not allow the
best clusters to be found deep down the clustering tree because of the high
travel cost to get there. Some of the best matching clusters found (with
a smaller travel cost less influencing the complete cost) were promising
however. Table 3.2 gives a sample of the best clusters found for particular
topics and its score. The clusters found at depth 2 can be considered as
chosen under influence of travel cost - most probably a cluster with a lower
detection cost can be found further down the tree. The other clusters have
a more promising detection cost, with a recall close to 100% and a precision
of around 25%.

The structure obtained by using average linkage seems to be more bal-
anced, naturally enabling more clusters to be considered, not being limited
by travel cost. This is one of the major reasons average linkage performs
much better when evaluating with the minimal cost metric.
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Table 3.2: Sample of best matching clusters using complete linkage
System Minimum Norm Norm #Ref #Sys #Union Depth
cluster cost detect. travel

cost cost
v7102 0.6656 1.001 0.0146 5 2 0 2
v7102 0.6656 1.001 0.0146 33 2 0 2
v7102 0.6656 1.001 0.0146 60 2 0 2
v8514 0.2333 0.1686 0.3588 30 29 25 49
v7102 0.6656 1.001 0.0146 1 2 0 2
v7102 0.6656 1.001 0.0146 4 2 0 2
v7102 0.6656 1.001 0.0146 9 2 0 2
v7102 0.6656 1.001 0.0146 1 2 0 2
v8933 0.5553 0.0152 1.6036 10 41 10 219
v7102 0.6656 1.001 0.0146 3 2 0 2
v8500 0.1387 0.0064 0.3954 8 21 8 54
v5701 0.1454 0.0015 0.4247 1 4 1 58
v7102 0.6656 1.001 0.0146 41 2 0 2
v7102 0.6656 1.001 0.0146 5 2 0 2
v7102 0.6656 1.001 0.0146 9 2 0 2
v7102 0.6656 1.001 0.0146 17 2 0 2
v8013 0.2758 0.1765 0.4686 12 30 10 64

3.4.2 Influence of rebranching

The preference of the minimal cost metric for clusters closer to the root of
the tree in combination with an unbalanced tree resulted in bad results for
complete and single linking. The tree should be balanced without mod-
ifying important cluster information. This is done using the rebranching
method described before. Table 3.3 shows the minimum cost of the re-
branched structures. The dissimilarity thresholds used are adapted to the
various methods. The complete linkage causes the dissimilarity to reach 1
quickly for clusters higher in the tree. The threshold is set close to 1 cor-
respondingly. Average linkage will not quickly reach a dissimilarity close
to 1, so a threshold value smaller than 1 is chosen. Single linkage suffered
so badly under the chaining effect, no threshold value resulted in a cluster
structure with its best clusters having a lower minimal cost. Therefore it
was decided not to continue further experiments using the single link clus-
tering technique. The rebranching action did not have a large (-6%) impact
on the minimum cost for the structure built with average linking. The nor-
malized travel cost however decreased significantly (-65%). As expected
the minimum cost for the cluster structure built using complete linking
decreased (-50%)as a result of rebranching. A more balanced tree will be
searched more thoroughly, i.e. more clusters down the tree are considered,
enabling all of the compact clusters to be picked as optimal clusters. As a
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result the travel cost and the detection cost decreased after rebranching the
structures built using complete linkage.

3.4.3 Influence of matching

It was expected that the complete cluster structures, i.e. the structures ob-
tained by adding the rest of the document dataset to the sample structure,
would increase the average minimum cost of the optimal clusters. The con-
trary was true: adding the new documents to multiple clusters, resulting
in a fuzzy cluster structure, improved the results! Table 3.4 shows the cost
before and after the matching process. It’s particularly interesting that the
average detection costs for the TDT 3 and TDT 5 dataset are so different.
For the TDT 5 dataset the normalized detection cost and normalized travel
cost are in the same order, whereas for the TDT 3 the detection cost is much
higher. This might be caused by differences in the dataset, or the way the
ground truth was composed.

Furthermore it is noteworthy that the detection cost for the TDT 5 after
matching has decreased. The recall has improved (lower Pmiss rate) but the
precision has gone down (higher Pfa). The fuzzy matching is causing this.
By adding new documents to multiple clusters, recall will often increase for
these clusters. The cost of a false alarm is very low because the dataset is
quite large and topics are quite small3. Simply guessing related documents
for a particular topic using this matching method pays off: the chance an
on-target document is guessed is quite large, resulting in a high chance to
increase recall, while the cost of a false alarm is low.

3.4.4 Intuitiveness

The results do raise questions about the intuitiveness of the metric. For ex-
ample consider the cluster named ‘v18100’ in table 3.5. It represents a topic
supposedly to have 81 new items, but it actually contains 2826 items, of
which 80 actually overlap with the truth cluster. The penalty for missing
1 of the 81 documents is calculated as 0.0123, whereas the false alarm of
2746 items only adds 0.0099 of cost. Just imagine a user trying to find its
way through a ‘topic’ polluted with so many unrelated items. The aver-
ages in table 3.5 show the clusters do have a good recall, but its precision
is very low. This phenomenon is also apparent in the results of table 3.4:
after the fuzzy matching of new documents the the misses decrease but the
false alarm rate goes up. The metric allows a large increase of the recall by

3the cost of a false alarm is normalized by the chance a random document does not
belong to a topic, which is low if the dataset is large and the topics small
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adding documents to multiple clusters - the loss in precision is not penal-
ized.

Although the idea behind the introduction of the travel cost is understand-
able, it does not really penalize ‘powerset’ structures as it was intended.
The travel cost penalizes structures not having the desired branching factor
or which are not balanced very well, although the ground truth does not
provide any information about this. Another cost component should be
introduced to penalize scattering documents over a large number of unre-
lated clusters as is the case when constructing powerset cluster structures.

3.5 Conclusion & further research

In this chapter the results of a prototype HTD system were presented.
The usage of conventional agglomerative clustering techniques combined
with dissimilarity measurement using language modelling looks promis-
ing. The structures built with complete linkage using this distance mea-
surement do need restructuring to be effective however.

The system has been used for participation in the newly introduced HTD
evaluation task of TDT 2004 and achieved best results. The intuitive quality
of the clusters is questionable however. At this time the results have too
little precision to be really useful. The results give thought about the metric
used for HTD evaluation. The metric should be studied in more depth to
investigate and improve the usefulness of the cluster structures.
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Figure 3.2: Data Flow Diagram

Table 3.3: Influence of rebranching
Cluster method (size) Minimum Norm. Norm. Depth

cost detection travel
cost cost

Average linkage 0.2747 0.3722 0.0855 11.68
. . . after rebranching (threshold 0.97) 0.2579 0.3620 0.0559 6.11
Complete linkage 0.612 0.8778 0.0962 13.14
. . . after rebranching threshold 1.0) 0.3497 0.5006 0.0567 5.89



3.5. Conclusion & further research 35

(a) Before - red/darker coloured clusters will be removed

(b) After - red/darker coloured clusters are new

Figure 3.3: The result of rebranching

Figure 3.4: Single link clustering suffers from chaining

Figure 3.5: Complete link clustering
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Figure 3.6: ‘Chaining’ behaviour of complete linkage clustering

Table 3.4: Influence of matching on average costs
Cluster method (size) Minimum Norm. Norm. P(miss) P(fa)

cost detection travel
cost cost

TDT3 sample (10,000) 0.2579 0.3620 0.0559 0.3069 0.0112
. . . after matching (35,000) 0.2430 0.3581 0.0195 0.2681 0.0184
TDT5 sample (20,000) 0.0565 0.0629 0.0441 0.0493 0.0028
. . . after matching (278,000) 0.0282 0.0406 0.0041 0.0224 0.0037
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Table 3.5: Sample results from one complete TDT 5 cluster structure
System Minimum Norm Norm #Ref #Sys #Union P(miss) P(fa)
cluster cost detect. travel

cost cost
v13965 0.0039 0.0045 0.0028 5 261 5 0 0.0009
v15445 0.0023 0.0023 0.0022 1 133 1 0 0.0005
v14140 0.0024 0.0019 0.0035 27 133 27 0 0.0004
v16401 0.0095 0.0131 0.0025 13 759 13 0 0.0027
v18100 0.0411 0.0607 0.0031 81 2826 80 0.0123 0.0099
v3969 0.0013 0.0004 0.0031 1 24 1 0 0.0001
v5859 0.0019 0.0012 0.0032 2 71 2 0 0.0002
v1076 0.0029 0.0018 0.0051 1 104 1 0 0.0004
v3440 0.0019 0.0013 0.0031 2 76 2 0 0.0003
v9072 0.0094 0.0117 0.0050 21 683 21 0 0.0024
v2590 0.0017 0.0005 0.0042 1 28 1 0 0.0001
v8772 0.0448 0.0664 0.0030 63 223 59 0.0635 0.0006
v17828 0.0016 0.0009 0.0030 1 50 1 0 0.0002
v15435 0.0065 0.0073 0.0051 2 417 2 0 0.0015
v17092 0.0037 0.0042 0.0028 5 241 5 0 0.0008
. . . . . . . . . . . . . . . . . . . . . . . . . . .
average 0.0282 0.0406 0.0041 43.15 1073.1 42.05 0.0224 0.0037
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Chapter 4
Evaluation metric

As became clear in the discussion of the prototype, evaluating a hierar-
chical cluster structure is not straightforward. In this chapter the expecta-
tions of a hierarchical topic structure and the minimal cost metric used for
the TDT evaluation are discussed. Improved metrics and a visualization
method are proposed useful for evaluating a hierarchical cluster structure
and a flat ground truth.

4.1 Expectations of hierarchical topic structures

The HTD task of the TDT programme does not precisely describe what is
intended with a hierarchical topic structure. It allows “clusters to be de-
fined at different levels of granularity” [NIS04]. How this corresponds to
the definition of a topic (see page 21), remains unanswered. A topic is based
on a seminal event and contains all documents describing this and directly
related events or activities. A larger corpus (for example spanning a larger
time frame) in general will describe more seminal events and this will re-
sult in more (TDT) topics. Following the rules of interpretation of the LDC
this results in a fuzzy, but flat structure of topics. How this flat structure
becomes hierarchical is left unanswered by the TDT task. Allowing a hi-
erarchical structure at this point looks like allowing more opportunities or
guesses to approximate the ground truth. A system has some method of
clustering documents, at some level documents are joined, but as it doesn’t
“know” where a topic begins or ends it may show its path of “reasoning”
so the evaluation can show the system is on the right track or not. Such an
evaluation shows the potential of the system, but the hierarchy will not be
of use to a user who wants to browse a large collection of documents. The
hierarchy is then a means of evaluation and not a browsable structure, as

39
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the evaluation metric does suspect.

Assuming it is possible to cluster documents in TDT topic clusters, it would
be desirable to group these clusters at some higher level. A natural continu-
ation of the cluster process would be grouping the topic clusters in clusters
representing some higher notion of topic. The clusters at a higher level
bring some abstraction by grouping a reasonable number of clusters which
have some characteristic in common. If a significant number of topics dis-
cuss accidents, a valuable cluster might group these various accidents, ab-
stracting from the type of accidents or the people involved.

Not only is this form of abstraction hard to realize – ask two different per-
sons to organize a set of documents in a hierarchy and the resulting struc-
tures are bound to differ – fully automated evaluation of these abstract hi-
erarchies seems almost impossible.

It would be useful if the quality of a cluster structure at least partially can
be assessed, given a flat ground truth provided by the LDC. The evaluation
then becomes answering the following question:

To what extent does this topic structure represent particular
topics?

In the following sections the minimal cost metric is discussed to find the
shortcomings of this evaluation method. After that improvements are pre-
sented.

4.2 Minimal cost metric

4.2.1 Construction of the ground truth

Before describing how the ground truth is put to work, the annotation
method used by the LDC is mentioned [Lin04].

The annotation manual describes the rules of interpretation stating thir-
teen types of seminal events, e.g. “crimes” or “natural disasters”. For each
of these types is described what is the scope of related events and activi-
ties. Furthermore the manual stresses that a TDT topic discusses only one
specific event, whereas in normal discourse you might expect a topic to be
more general.

The ground truth is only a partial annotation of the corpus. Random doc-
uments are used as seed for a particular topic. This seed story is used to
determine the seminal event and a search engine is used to find related
stories. The resulting topics strongly vary in size and detail level.
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An important consequence of this method is that the chosen seed strongly
influences the resulting topic. If a random document from an annotated
topic is used as a new seed, this can result in a different (but probably over-
lapping) topic. It’s not clear how particular document seeds are treated, for
example a news item which discusses two distinct seminal events.

4.2.2 Motivation of the minimal cost metric

Fiscus [FD02] describes the TDT as a detection task in which “the system
is presented with input data and a hypothesis about the data, and the sys-
tem’s task is to decide whether the hypothesis about this data is true”. The
hypothesis is true when a document belongs to a particular topic and false
if it does not. This leads to a number of target and non-target trials, i.e. a
test to determine if a document is on- or off-topic respectively. The detec-
tion cost of a particular cluster for a particular topic indicates how well the
cluster represents the topic.

Allan et al [AFB03] note the new fuzzy hierarchical structure introduces
some new challenges. The fuzzy structure allows documents to be assigned
to multiple clusters. A “powerset” structure, i.e. a structure in which each
or many possible sets of documents have its own cluster, would achieve
a perfect detection cost when searching for the best matching cluster. The
hierarchy allows to define relationships across clusters and allows splitting
a topic into multiple clusters. The metric should incorporate this hierar-
chy in a meaningful fashion. The travel cost is introduced to deal with the
hierarchy and fuzziness of the cluster structure.

4.2.3 Shortcomings of the minimal cost metric

At a first glance the evaluation methodology of the TDT seems clear and
intuitive: human annotators build a ground truth and system cluster struc-
tures are evaluated by scoring its resemblance. By following this approach
and in particular the minimal cost metric as an evaluation mechanism sev-
eral hypotheses about the desired structure and usage are adopted. The
minimal cost metric is parametrized, i.e. the impact of the components can
be adjusted using parameter values. Using a particular set of parameters
influences the properties of the desired cluster structure and evaluates a
particular task.

The travel cost component is introduced as some kind of usability cost: it’s
attractive to have a hierarchical structure which brings you quickly from
the root to the desired cluster. It implies the cluster structure is used for
some kind of browsing: a user starts at the root cluster and descends down
the tree towards the best cluster.
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Looking for the best cluster can be compared to a user with a very spe-
cific information need and finding out if a cluster exactly meets this need.
If a hierarchical structure is useful for finding very specific information is
questionable. Pirolli et al [PSHD96] showed that the Scatter/Gather cluster
hierarchy did not increase the speed of finding specific information com-
pared to a ‘common word-based search’. Having a small topic in mind and
finding this information in a collection of 400, 000 documents by brows-
ing the hierarchy from the root cluster, would be like finding a needle in a
haystack. On the other hand it would be interesting if the structure allows
finding such a topic or clearly outlines such a topic.

In the following sections some of the shortcomings of the current approach
are discussed.

Combined cost

The best cluster is defined as the cluster with the lowest combined detection
and travel cost: a user considers both the quality of the cluster found and
the effort of finding it. The combined cost is a linear combination of the two
components: a high combined cost is caused by the high contributions of
one or both cost components. A cluster having a high travel cost will result
in a high combined cost and influences if this cluster is the best cluster for
a particular topic. The contribution of the travel cost can cause a cluster
not to be chosen as best cluster, despite a possibly low detection cost for
a particular topic. This can be seen as a user reluctant of finding a better
cluster, after trying all clusters with a travel cost below a certain effort. If
this reluctant behaviour is desirable in an evaluation is questionable. The
evaluation should tell if a cluster structure effectively outlines a topic and
besides that note that finding the most effective cluster required a certain
effort, translated into some (travel) cost. Not even considering particular
clusters “as they require too much effort” restrains a possibly very effective
cluster structure from performing well. As a result the evaluation cannot
discriminate between an ineffective cluster structure and an effective but
“high-effort” cluster sructure.

Shortest path representing effort

During evaluation the cluster structure is thoroughly searched for a cluster
with the lowest combined cost for a particular topic. The path from the root
which leads directly to the best cluster is used for calculating the travel cost,
representing the effort of finding the cluster. It’s questionable if this effort
is directly related to the shortest path. A shorter path to reach the same
cluster does not always imply the effort to find that cluster is smaller as the
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shortest path may not be the actual search path of a user. This effort might
be stronger related to the informative value of the labels of the clusters and
a clear categorisation.

Hierarchy preferences

The travel cost favours balanced cluster structures with a particular branch-
ing factor, although no evidence is provided that a balanced hierarchical
structure indeed is better. It’s quite likely that the documents in a news
archive are not equally divided in high level topics. This requirement en-
courages artificial approaches to achieve a better score, such as the rebal-
ancing procedure used for the prototype. The structure obtains a better
score by applying this operation, without using any knowledge of the doc-
ument content. The following example shows how a suboptimal solution
increases performance according to the metric.

Example. Assume a cluster structure S and a ground truth G. The incom-
plete ground truth contains g topics. S has one root cluster cr, which has
g + 1 child clusters, c1 to cg+1. Clusters c1 to cg exactly match the topics t1
to tg:

∀n ∈ 1..g • tn = cn

Cluster cg+1 contains the documents not annotated by the ground truth, as
a result S covers the complete document collection:

cg+1 = D\
⋃
t∈G

t

The detection cost for each of the best clusters is 0, as for each topic an exact
match can be found. The travel cost for each of these clusters is:

(g + 1) · CBRANCH + CTITLE

In general the number of topics g is much larger than the preferred branch-
ing factor (3 for TDT 2004). The clusters c1 to cg+1 can be used as leaf
clusters in a balanced tree structure with a branching factor of 3. As this
structure has a depth of dlog3(g + 1)e the travel cost for the optimal clus-
ters (still having a detection cost of 0) is:

dlog3(g + 1)e · (3 · CBRANCH + CTITLE)

For CBRANCH = 2 and CTITLE = 1 (the values used for the TDT evaluation)
this gives for the restructured example:

7 · dlog3(g + 1)e
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For the original structure this yields a cost of:

(g + 1) · CBRANCH + CTITLE = 2 · g + 3

For all g > 5 this gives a lower or at most equal travel cost for the restruc-
tured sample. This shows that by adding dummy clusters to an optimal
solution a lower score can be obtained, which is clearly not desirable.

We doubt if a hierarchy should have a preferred branching factor, or should
be balanced. The Open Directory Project (DMOZ), a hierarchical categori-
sation of a collection of websites created by human editors, does not have
a certain ‘balancedness’ or branching factor (see appendix A). Assuming
the news items in the corpus are as diverse as the websites in the DMOZ, a
preference for a particular branching factor or “balancedness” is not justi-
fied.

Linear travel cost

For the moment we will assume the user is capable of descending the clus-
ter structure towards the best cluster directly. Furthermore we will assume
the cluster structure is, as desired by the metric, perfectly balanced and has
the desired branching factor.

Starting from the root cluster, a user has to choose from a limited number
of clusters; choosing one cluster brings the user one step closer in finding
the desired cluster. By choosing this cluster, the other clusters and its child
clusters are discarded. So with a branching factor of 3, a selection is made
of one third of the documents contained by the root cluster. Two third of the
documents contained by the root cluster are discarded. Every next choice
for a particular cluster reduces the number of ‘selected’ documents with a
factor 3 (the branching factor). For each choice in this search path a constant
amount of travel cost is added.

The revenue (the number of discarded documents) of later choices in the
search path is smaller, but the cost (a choice) remains the same. So it can
be argued that these choices are more expensive and that the travel cost
should increase stronger for later choices in the search path.

This can also be explained from the viewpoint of possible number of clus-
ters at a certain depth. Assuming a fixed branching factor of b, the root
cluster has b possible clusters at depth 1. These child clusters all can have
b children, so the structure has b2 possible clusters at depth 2. A cluster
structure with depth n has bn possible clusters at depth n.

The travel cost of a cluster found at depth n is:

Ct(n) = (CTITLE +b · CBRANCH)n
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When the depth of the cluster structure is increased, the number of possible
clusters and the travelcost change as follows:

∆bn = bn+1 − bn = bn · b− bn = (b− 1) · bn

∆ Ct(n) = Ct(n + 1)− Ct(n) = (CTITLE +b · CBRANCH)

So increasing the depth of a cluster structure with one, especially for clus-
ters which are already deep, pays off. Many more ‘guesses’ are allowed
with only a small linear increase in travel cost.

Discriminating powerset and skewed cluster structures

The travel cost is introduced to penalize powerset cluster structures [AFB03],
but it actually cannot determine this. A cluster structure tending more to-
wards a powerset solution does indeed have a higher travel cost, as more
clusters also require a larger width and height with corresponding branch-
ing cost and title cost respectively. But as the travel cost only looks at the
structure of the shortest path from root to cluster, i.e. the length of the path
and the branching factor of the clusters in the path, it cannot actually de-
termine the difference between a skewed cluster structure and powerset
cluster structure. The following example illustrates this.

Figure 4.1: Travel cost of a powerset and skewed cluster structure

Example. Assume two cluster structures Sp (a “powerset” cluster struc-
ture)and Ss (a skewed cluster structure) for a particular document collec-
tion D. Both structures are evaluated for a particular topic t from a ground
truth. Figure 4.1 shows the best two clusters found for Sp and Ss, indicated
as a black dots. The gray dots indicate the clusters on the path to the best
cluster. Both paths have a length of 3 (resulting in 3·CTITLE) and 6 branches
are encountered (resulting in 6 · CBRANCH). Although the resulting travel
cost for both clusters is the same, the powerset cluster structure Sp allows
far more possible clusters, far more “guesses” for each of the topics.
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4.2.4 Conclusion

Modelling the user effort of finding a cluster seems intuitive but the im-
plementation in the minimal cost metric doesn’t work out as intended.
The travel cost imposes strong restrictions or preferences on the structure,
which do not always correspond to the expectations of a good cluster struc-
ture. Using a combined cost as best cost limits the information provided by
the evaluation; possibly effective cluster structures can be judged as not
valuable if the travel cost of the effective clusters is too high.

Major difficulties in defining an evaluation metric for hierarchical topic de-
tection are the unclear purpose and following expectations of the cluster
structures, as discussed in section 4.1. Maybe this is because it’s also un-
clear what can be expected from current HTD techniques.

Defining a very strict evaluation with a preference for particular cluster
structures does not seem to contribute to solving these difficulties. The
evaluation should aid in exploring what is technically possible and stimu-
late discussion about what is desired and what is expected of hierarchical
topic structures. A vague task should have a “vague” metric accordingly.
Therefore is argued to use separate indicators to evaluate cluster structures.
The detection cost and travel cost should be used and evaluated separately.
Other indicators are required to evaluate the true “powerset” tendency and
complexity of the cluster structure. In the following section these additions
and improvements are further discussed.

4.3 Revised evaluation metric

During the evaluation a topic is compared to a cluster structure. A cluster
structure might have a single cluster exactly matching a topic cluster, or
multiple clusters partially matching the topic cluster.

We are primarily interested in the topicrelevant clusters of a topic.

Definition. Topicrevelant clusters for a particular topic, R(t), are the clusters
from a cluster structure V which (directly or indirectly) contain one or more
documents from the topic t:

R(t) = {c | c ∈ V ∧ ∃d ∈ t • d ∈ D∗(c)}

Note that the root cluster is topicrelevant for all topics, as it contains all
documents including at least one document from a topic. Furthermore all
topicrelevant clusters are connected via some path to the root cluster. The
topicrelevant clusters and their relationships form a natural subgraph of the
original structure.
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The group of topicrelevant clusters can be examined to see how the cluster
structure represents a particular topic. If a topic has many topicrelevant
clusters, the topic might not be distinguishable in the structure. Multiple
aspects are of interest, which will be described in the following sections.

4.3.1 Effectiveness

The effectiveness of each topicrelevant cluster is of interest, which is based
on the overlap between the cluster and topic. The root cluster will have
a recall of 100% but a low precision (typically even approaching 0%) as
the topic will not be the complete document collection. Other topicrele-
vant clusters further down the structure will have a higher precision, but
probably at the expense of recall. Following the current evaluation of TDT
a preference can be adopted for a particular trade off between recall and
precision.

4.3.2 Fuzziness

The new hierarchical cluster structure allows documents to be part of mul-
tiple clusters and clusters to be children of multiple parents. This “fuzzi-
ness” is an indicator of the complexity of a cluster structure. The complex-
ity of a topic can be related to the paths from the root cluster to each of the
individual topicdocuments.

Definition. The documentfuzziness of a document, df(d), is the number of
paths from the root cluster cr to a document d.

The documentfuzziness is at least 1; a higher value indicates the document
can be reached in multiple ways.

Definition. The topicfuzziness, tf(t), is the average documentfuzziness of
the documents in a topic t.

The topicfuzziness is at least 1; a higher value indicates the documents in
the topic can be found in multiple ways.

4.3.3 Hierarchy above and below

A larger number of topicrelevant clusters already signals the topic is not
represented straightforward, but also the structures above and below top-
icrelevant clusters are of interest. A cluster might be very effective, but if
the cluster or its topicdocuments can only be reached via a complex web of
clusters, this might not be the desired situation.
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As indicators of the complexity of the hierarchy above a cluster, we use the
average root path length and the average encountered branches of the cluster.
Note this indicators were also used to calculate the travel cost.

Definition. The average root path length of a cluster, ap(c), is the average
length of the paths from the root cluster cr to cluster c.

Definition. The average encountered branches of a cluster, eb(c), is the av-
erage number of encountered branches of all the paths from the root cluster
to cluster c.

As indicators of the complexity of the hierarchy below a cluster, we can
look at the number of steps needed to reach each of the topicdocuments.
Furthermore the number of distinct paths to a topicdocument indicates the
complexity of the hierarchy below a cluster. We use the average path length
to the topic documents of that cluster and the number of paths from this
cluster to the topicdocuments as indicators of the complexity below a clus-
ter.

4.4 Visualizing topic evaluations

Having a table of the previously mentioned indicators for a number of top-
icrelevant clusters is useful, but a visualisation of this data can bring more
insight how the clusters are actually connected.

The natural subgraph spanned by the topicrelevant clusters can be dis-
played to provide this information. In this graph the relationship between
topicdocuments and clusters can be visualized. Furthermore the relation-
ship between parent and child clusters can be shown. As the structure can
be fuzzy, a topicdocument can be directly contained in multiple clusters.
This fuzziness can also be displayed by connecting the topicdocuments
contained by topicrelevant clusters.

As the paths can become quite long, we need some way to group less sig-
nificant clusters. Significant clusters are defined as follows:

Definition. A significant topicrelevant cluster has a topicdocument directly
attached, or has at least two child clusters which are topicrelevant, i.e. the
cluster merges two or more topicrelevant clusters. The root cluster is al-
ways significant.

Chains of not significant topicclusters can be represented as a single node
to save space.

Figure 4.2 shows an example of such an visualization:
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• The elipses represent relevant topicclusters, identified by their name
(and dissimilarity), total number of documents and the number of
matching topicdocuments (union). The colour indicates the effective-
ness of the topiccluster; a greener/darker colour implies a lower de-
tection cost.

• The rectangles represent (groups of) topicdocument(s) identified by
their name.

• The triangles represent groups of irrelevant topicclusters.

• The edges indicate parent child relationships between clusters.

• The dotted edges between rectangles containing topicdocuments in-
dicate there is overlap between the two groups.

4.4.1 Algorithm

One of the advantages of the algorithm used for the minimal cost metric, is
the pruning of unnecessary searches (see page 25). The proposed indicators
cannot benefit from such an approach, as all topicrelevant clusters need to
found. Therefore a bottom-up algorithm is suggested. Starting from the
topic documents, the topicrelevant clusters can be found which directly
contain one or more topic documents. This set of clusters can repeatedly be
expanded with the parents of the clusters in the set, until no more parents
can be added. This set of clusters then contains all the topicrelevant clus-
ters. Experiments showed this algorithm outperformed the pruning tree
search used for the minimal cost metric for the cluster structures created
using the prototype 1.

4.5 Conclusion

Evaluating hierarchical topic structures is difficult with only a flat ground
truth available; the value of higher level clusters is hard to determine. Im-
posing strong restrictions as in the minimal cost metric results in a bias
for particular suboptimal solutions. Looking for only one particular “best”
cluster seems a limited approach when the structure offers far more poten-
tial.

We argue for evaluating a selection of clusters when comparing a hierar-
chical cluster structure to a ground truth topic. This selection of clusters

1Running the minimal cost evaluation algorithm on the prototype TDT 5 cluster struc-
tures took around one complete day; the bottom-up approach took around 20 minutes on a
GHz workstation with 1 GB of working memory
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can be evaluated using multiple but seperated indicators which give an ex-
tensive view of the performance of the cluster structure. We have chosen
not to combine these indicators in a new single value score, as it again will
present a preference for a very particular type of cluster structure while at
this time the requirements for a hierarchical topic structure seems unclear.
As a result it is not possible to tweak the structure for a minimal overall
cost and forces a discussion of the obtained indicator values and a desired
cluster structure.
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Figure 4.2: Visualisation of topicclusters
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Chapter 5
Experiments

In this chapter the indicators and visualization introduced in the previous
chapter are used to underline the results obtained during development of
the prototype (chapter 3). The chapter serves as an example how to use the
indicators for an evaluation of a cluster structure. The evaluation results
have been added in Appendix D.

5.1 Linkage methods

During development of the prototype system was observed that accord-
ing to the minimal cost metric, single linkage performed worst, followed
by complete linkage and the best results were obtained by using average
pairwise linkage. It is expected this order will not change, but why does
average linkage outperform the others?

5.1.1 General

Before the three different methods are discussed, a note is made on the
result of a HAC method in general.

Effectiveness

As the result of HAC is a binary tree, a cluster structure of n documents
requires n− 1 clusters to merge them to one root cluster. A cluster has two
children: either a pair of two document clusters, a pair of two clusters, or a
combination of one cluster and one documentcluster. Singleton topics, i.e.

53
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topics containing only one document will always have a matching docu-
ment cluster and “perform well” judging from the effectiveness indicators.

Fuzziness

Documents can only be assigned to one cluster, so there is no fuzziness at all
in a cluster structure obtained from applying HAC. The matching process
does introduce fuzziness, which will be further discussed in section 5.3.

Hierarchy

The hierarchy above effective topicrelevant clusters has paths of varying
lengths to the root cluster. Each cluster has only one path to the root cluster.
If the cluster structure is completely balanced, the path to reach the root
will be of length dlog2(n/m)e, where n is the size of the collection and m
is the size of the cluster. The path length to the root can vary between 1
(a cluster as a directly under the root) to n − m (a completely unbalanced
cluster structure). The number of encountered branches is, as the cluster
structure is a binary tree, the double of the path length.

The value of the indicators of the hierarchy below topicrelevant clusters de-
pends on the size of the cluster. A cluster containing n documents has n−1
(grand)child clusters to group the n documents. The average path length
to reach topicdocuments from this cluster (dependent on its balancedness)
will grow with the size of the cluster. The average path length to reach top-
icdocuments will also grow as a result of a less effective cluster; more doc-
uments require more clusters in a binary structure and the paths to reach
topic documents will grow accordingly.

Without looking at the actual result of a HAC, we can already note the
hierarchy will not be very useful for browsing. Assuming HAC is capable
of grouping documents in topics effectively, the structure cannot clearly
outline a topic as it is bound to the binary branching.

Figure 5.1 shows a cluster structure which contains a cluster with an almost
perfect effectiveness. The chain of 2609 clusters between the root cluster
and the first significant topicrelevant cluster make identification of this dis-
tinct topic hard, although this cluster effectively matches the topic.

5.1.2 Single linkage

The visualization of a 100 documents sample clustered using single linkage
already showed single linkage suffered from chaining (see figure 3.4 on
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page 35). Visualization of a larger cluster structure (with 20,000 documents)
is not possible in the same way however.

Only visualizing the subgraph containing topicrelevant clusters for each
of the topics from the TDT 3 evaluation does show this behaviour. The
clusters form a connected chain, separated by long paths of non significant
clusters (paths represented by triangles). Some characteristic visualizations
are shown in figure 5.2.

The chaining behaviour is noticeable from the proposed indicator values
(see Appendix D). The average number of encountered branches and av-
erage path length to reach the best topicrelevant clusters are very high if a
user has to browse the structure (an average length of almost 3000 clusters
and 6000 branches to consider for one topic). Also the number of topicrele-
vant clusters for a topic is high: with an average of almost 3500 clusters per
topic with an average size of 30.

5.1.3 Complete linkage

The visualization of the sample clustered using complete linkage shows
the method produces tight groups of clusters, which are combined at a
higher level. Complete linkage defines the distance between the newly
created cluster and remaining clusters as the minimal distances between
the merged clusters and the remaining clusters (see section 2.2.3). As a re-
sult the relationship between newly created clusters and remaining clusters
quickly diminishes. Clusters high in the tree have a dissimilarity with the
maximum value of 1; clusters at this level were not “motivated” by some
similarity, but there simply is not a more similar pair at that time to merge.

Figure 5.3 shows some typical visualizations of subgraphs containing top-
icrelevant clusters. The topics used for these visualizations correspond to
the ones used for figure 5.2.

The indicator values show the average recall and precision of the most
effective clusters are both around 50%, resulting in an average detection
cost of 0.01 (see Appendix D). This gives a different view of the effective-
ness compared to the TDT evaluation (see average results in table 3.1 on
page 29): during the minimal (combined) cost evaluation the average de-
tection cost component was 0.0176. Comparing to the single link cluster
structure, many of the indicator values are lower (the average root path
length is 90% shorter and the number of topicrelevant clusters 78% lower).
Surprisingly the average effectiveness of the best clusters from the com-
plete link cluster structure is comparable (4% lower) to the clusters from
the single link cluster structure. The evaluation using the minimal cost met-
ric did not show this resemblence. With modification the obtained cluster
structures using single linkage, might achieve similar results as complete
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linkage.

5.1.4 Average linkage

The visualizations of average pairwise link look like a combination of sin-
gle and complete linkage: compact groups of clusters of various sizes are
linked in chains (see figure 5.4).

Interestingly the visualization shows the average link cluster structures
contains more effective topicrelevant clusters (more clusters are coloured
stronger; this indicates a lower detection cost).

Average pairwise linkage outperforms single and complete linkage in al-
most all indicator values. Only the precision of the average pairwise link-
age method (30%) is worse (20%. lower than complete linkage and 14%.
lower than single linkage). With an average path length of 15 from root
cluster to most effective topicrelevant clusters, the indicator value shows
the average pairwise link cluster structure is more naturally balanced for
the evaluated topics. If a path of 15 clusters and 30 branches to consider
is still userfriendly is questionable. The hierarchy below the best clusters
might be too complex, as the paths to topic documents are long.

5.2 Rebranching

As intended with the rebranching operation, only the top of the cluster
structure is changed. As a result the average path lengths from the root to
topicrelevant clusters decreases as well as the average number of encoun-
tered branches. The visualization of the rebranching operation does not
bring any new information – it merely decreases a chain of non significant
topicclusters (a triangle shaped node gets a different label).

5.3 Matching

The matching method influences fuzziness of the cluster structure, as new
documents can be added to multiple sample clusters, resulting in a higher
documentfuzziness for these documents. If a topicdocument is added to
multiple (grand)child clusters of a topicrelevant cluster, the document can
be reached via multiple paths. The visualization of the subgraph containing
topicrelevant shows that sometimes this matching process leads to bizarre
results. Figure 5.5 shows a very fuzzy cluster structure.
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5.4 Conclusion

The separated indicators and visualization introduced in the previous chap-
ter give a new perspective on the prototype cluster structures previously
evaluated using the minimal cost metric. Average pairwise linkage still
outperforms complete and single linkage in the complexity of the hierar-
chy above the best topicclusters: the paths from the root cluster are shorter
and less branches have to be considered. Also in effectiveness the average
link method outperforms the others, but it should be noted only a partic-
ular trade off between recall and precision was evaluated in which recall
was preferred over precision. A different trade off might give a different
result.

The evaluation shows the cluster methods have a tendency to group doc-
uments in topiccoherent groups, although especially precision is not very
high. The cluster structure above and below do not seem very useful how-
ever; independent of clustering method the topicrelevant clusters require
long paths (on average longer than 15 clusters) from the root and long paths
to topicdocuments from these clusters. The increased documentfuzziness
does not seem to bring more clarity in topicrelevant clusters: they provide
multiple paths to locate the same documents.

One important next step which should be explored is how the binary clus-
ter structure can be made useful by restructuring the upper and lower clus-
ter structures. Interesting would be to find out if the documentfuzziness
might gives information about which clusters are too detailed and should
be merged with its parent.

Another interesting question is the effect of the document modelling and
distance metric. Does a system based on the Dice or Cosine distance mea-
sure give topicrelevant clusters with the same effectiveness?
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Figure 5.1: A nearly “perfect” cluster structure
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Figure 5.2: Characteristic visualizations of single linkage
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Figure 5.3: Characteristic visualizations of complete linkage



5.4. Conclusion 61

2 topicdocs
APW19981017.0477
APW19981018.0840

v994 0.599
2 docs
2 union

1 topicdocs
NYT19981018.0098

v1740 0.667
4 docs
4 union

v1346 0.642
3 docs
3 union

2 topicdocs
APW19981018.0410
APW19981018.0423

v229 0.343
2 docs
2 union

1 topicdocs
APW19981018.0880

2 topicdocs
NYT19981019.0402
APW19981030.0743

v1348 0.642
2 docs
2 union

1 topicdocs
NYT19981020.0281

v1596 0.657
4 docs
4 union

v1246 0.631
3 docs
3 union

2 topicdocs
NYT19981024.0055
NYT19981121.0099

v2828 0.722
2 docs
2 union

1 topicdocs
APW19981024.0192

v1882 0.675
2 docs
1 union

2 topicdocs
APW19981025.0449
APW19981212.0938

v3035 0.731
2 docs
2 union

1 topicdocs
APW19981025.0455

v5419 0.821
63 docs
52 union

v5390 0.820
62 docs
51 union

1 topicdocs
APW19981025.0652

v1998 0.682
3 docs
2 union

1 topicdocs
NYT19981028.0435

v1209 0.626
3 docs
3 union

v591 0.485
2 docs
2 union

2 topicdocs
APW19981028.0728
APW19981028.0742

1 topicdocs
APW19981028.1104

v1770 0.669
3 docs
3 union

v79 0.333
2 docs
2 union

1 topicdocs
NYT19981029.0468

v3506 0.750
36 docs
31 union

v3236 0.739
35 docs
30 union

1 topicdocs
APW19981030.0766

v1040 0.607
2 docs
2 union

1 topicdocs
APW19981101.0852

v5840 0.835
64 docs
53 union

2 topicdocs
APW19981102.0749
APW19981103.0567

v517 0.448
2 docs
2 union

1 topicdocs
APW19981102.0776

v654 0.516
3 docs
3 union

1 topicdocs
APW19981103.0553

v1410 0.646
2 docs
1 union

1 topicdocs
NYT19981104.0362

v2416 0.703
4 docs
4 union

2 topicdocs
NYT19981105.0430
APW19981119.1190

v1086 0.613
2 docs
2 union

2 topicdocs
APW19981106.0534
APW19981106.0537

1 topicdocs
APW19981106.0866

v7203 0.878
68 docs
54 union

2 clusters

2 topicdocs
APW19981107.0703
NYT19981108.0091

v1112 0.616
2 docs
2 union

2 topicdocs
APW19981117.0270
APW19981125.0576

v824 0.567
2 docs
2 union

1 topicdocs
APW19981120.1251

v3855 0.764
3 docs
3 union

2 topicdocs
NYT19981121.0102
NYT19981126.0174

v3166 0.737
2 docs
2 union

1 topicdocs
APW19981126.0235

v3091 0.733
29 docs
25 union

v2878 0.724
28 docs
24 union

1 topicdocs
APW19981126.0453 1 clusters

1 topicdocs
NYT19981127.0208

v2656 0.714
5 docs
2 union

1 clusters

1 topicdocs
NYT19981127.0239

v1642 0.661
2 docs
1 union

1 topicdocs
APW19981128.0348

v594 0.486
3 docs
1 union

2 topicdocs
APW19981128.0661
APW19981201.0904

v1104 0.615
2 docs
2 union

1 topicdocs
APW19981128.0740

v1362 0.643
3 docs
3 union

1 topicdocs
NYT19981201.0521

v3302 0.741
2 docs
1 union

1 topicdocs
APW19981206.0191

v4809 0.799
2 docs
1 union

1 topicdocs
NYT19981206.0222

v2975 0.729
3 docs
1 union

1 topicdocs
NYT19981209.0329

v2534 0.709
3 docs
2 union

1 topicdocs
APW19981210.0910

v4917 0.803
57 docs
47 union

1 clusters
1 topicdocs

NYT19981211.0287

v4395 0.784
3 docs
3 union

2 topicdocs
APW19981217.0599
APW19981217.0600

1 topicdocs
APW19981220.0570

v3324 0.743
3 docs
2 union

v2034 0.684
2 docs
1 union

1 topicdocs
APW19981225.0291

v2844 0.722
2 docs
1 union

1 topicdocs
APW19981225.0671

1 topicdocs
NYT19981230.0374

v4382 0.784
2 docs
1 union

v2393 0.702
11 docs
9 union

1 clusters

v3806 0.762
5 docs
5 union

v2038 0.684
8 docs
7 union

1 clusters

v1648 0.661
6 docs
5 union

v3590 0.753
38 docs
33 union

v2435 0.704
11 docs
9 union

v1187 0.623
5 docs
5 union

v2669 0.715
17 docs
15 union

v2515 0.708
13 docs
11 union

v4093 0.773
43 docs
37 union

v3932 0.767
40 docs
34 union

v2750 0.718
6 docs
5 union

v4966 0.805
60 docs
50 union

v4215 0.777
46 docs
39 union

v7554 0.887
71 docs
55 union

1 clusters

v4595 0.791
52 docs
44 union

1 clusters

v4721 0.796
55 docs
46 union

1 clusters

v9469 0.950
79 docs
56 union

3 clusters

v9971 0.990
989 docs
57 union

10 clusters 8 clusters

v9988 0.993
3709 docs
59 union

32 clusters 1 clusters

v9996 0.996
6636 docs
60 union

14 clusters

v9999 0.999
10000 docs

60 union

2 clusters

(a) Example 1

1 topicdocs
NYT19981001.0507

v5771 0.833
2 docs
1 union

1 topicdocs
NYT19981014.0003

v1930 0.679
4 docs
4 union

v1534 0.653
3 docs
3 union

2 topicdocs
NYT19981018.0175
NYT19981021.0448

v2373 0.701
2 docs
2 union

1 topicdocs
NYT19981024.0133

v3365 0.744
3 docs
3 union

2 topicdocs
NYT19981025.0089
NYT19981031.0165

v4389 0.784
2 docs
2 union

1 topicdocs
NYT19981025.0229

v5291 0.816
2 docs
1 union

2 topicdocs
NYT19981027.0383
NYT19981121.0019

v1204 0.626
2 docs
2 union

1 topicdocs
NYT19981029.0466

v1626 0.660
3 docs
3 union

1 topicdocs
NYT19981031.0145

v3008 0.730
2 docs
1 union

1 topicdocs
NYT19981103.0382

v2189 0.692
4 docs
4 union

2 topicdocs
NYT19981107.0062
NYT19981212.0156

v5765 0.832
2 docs
2 union

1 topicdocs
NYT19981107.0171

v2440 0.704
8 docs
8 union

v2363 0.701
7 docs
7 union

1 topicdocs
NYT19981110.0440

v3379 0.745
15 docs
15 union

v3084 0.733
14 docs
14 union

1 topicdocs
NYT19981113.0416

v7430 0.884
27 docs
24 union

v6069 0.843
26 docs
23 union

1 topicdocs
NYT19981114.0107

v2813 0.721
13 docs
13 union

1 topicdocs
APW19981117.1190

v8015 0.900
33 docs
29 union

v7700 0.891
32 docs
28 union

1 topicdocs
APW19981121.0107

v2300 0.698
5 docs
5 union

2 topicdocs
NYT19981210.0550
NYT19981211.0428

v4256 0.779
2 docs
2 union

1 topicdocs
NYT19981217.0401

v2091 0.687
6 docs
6 union

2 topicdocs
NYT19981222.0321
NYT19981228.0454

v1750 0.667
2 docs
2 union

1 topicdocs
NYT19981224.0340

v863 0.576
2 docs
2 union

1 topicdocs
APW19981224.0566

v4892 0.803
21 docs
20 union

v4223 0.778
20 docs
19 union

2 topicdocs
NYT19981227.0167
NYT19981231.0421

v3833 0.763
18 docs
18 union

v5935 0.838
24 docs
21 union

1 clusters

v7138 0.876
5 docs
4 union

1 clusters

v8495 0.914
37 docs
30 union

2 clusters

v9999 0.999
10000 docs

30 union

13 clusters

(b) Example 2

1 topicdocs
NYT19981001.0351

v3063 0.732
2 docs
1 union

1 topicdocs
NYT19981004.0152

v2613 0.713
4 docs
2 union

v2216 0.694
3 docs
1 union

1 topicdocs
NYT19981005.0329

v2896 0.725
2 docs
1 union

1 topicdocs
NYT19981005.0331

1 topicdocs
NYT19981005.0442

v4044 0.771
5 docs
1 union

1 topicdocs
APW19981017.0692

v1289 0.636
2 docs
1 union

1 topicdocs
APW19981019.0550

v5020 0.807
4 docs
4 union

v3678 0.757
3 docs
3 union

2 topicdocs
NYT19981020.0382
APW19981021.1170

v4307 0.781
2 docs
2 union

2 topicdocs
NYT19981024.0050
NYT19981113.0393

v1494 0.650
2 docs
2 union

1 topicdocs
NYT19981027.0320

v2883 0.724
2 docs
1 union

1 topicdocs
APW19981028.1073

v4926 0.804
3 docs
3 union

v2932 0.727
2 docs
2 union

1 topicdocs
NYT19981030.0404

v4202 0.777
33 docs
3 union

1 clusters

2 topicdocs
NYT19981105.0446
NYT19981211.0327

2 topicdocs
APW19981111.0904
NYT19981118.0377

v2280 0.697
2 docs
2 union

1 topicdocs
NYT19981113.0263

v7197 0.877
16 docs
3 union

7 clusters

1 topicdocs
NYT19981113.0394

v3410 0.746
2 docs
1 union

1 topicdocs
APW19981114.0169

v3221 0.739
4 docs
2 union

1 clusters

1 topicdocs
NYT19981115.0188

v3300 0.741
2 docs
1 union

1 topicdocs
APW19981116.1085

2 topicdocs
APW19981117.1204
NYT19981118.0484

v5665 0.829
2 docs
2 union

1 topicdocs
NYT19981129.0111

v7498 0.886
4 docs
1 union

1 topicdocs
APW19981204.1157

v4220 0.778
2 docs
1 union

1 topicdocs
NYT19981221.0398

v4618 0.792
3 docs
2 union

v3985 0.769
7 docs
3 union

1 clusters

v5847 0.835
21 docs
14 union

v5736 0.831
17 docs
10 union

v4905 0.803
7 docs
4 union

1 clusters

v5590 0.826
14 docs
7 union

v6579 0.859
26 docs
18 union

v6058 0.843
24 docs
16 union

v3832 0.763
30 docs
2 union

4 clusters 2 clusters

v6947 0.870
168 docs
4 union

3 clusters 9 clusters

v9195 0.937
42 docs
19 union

2 clusters 4 clusters

v9414 0.947
100 docs
20 union

9 clusters

v9555 0.954
378 docs
23 union

5 clusters

v9831 0.975
1173 docs
27 union

13 clusters 4 clusters

v9996 0.996
6636 docs
28 union

6 clusters 14 clusters

v9999 0.999
10000 docs

28 union

2 clusters

(c) Example 3

Figure 5.4: Characteristic visualizations of average linkage
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Figure 5.5: A fuzzy cluster structure after matching



Chapter 6
Evaluation and discussion

In this chapter we will try to answer the research questions posed in the
introduction chapter:

How can an automated Hierarchical Topic Detection system be
configured effectively to improve exploration and navigation of
news archives?

With the following sub questions:

• How can a very large collection of news items be clustered effec-
tively?

• How can the quality of an hierarchical cluster structure be measured?

In the following sections these questions will be discussed. Paragraph 6.3
concludes this work and deals with the main research question, followed
by possible future research.

6.1 Scalable hierarchical topic clustering

The onset of this work was the participation in the Hierarchical Topic De-
tection task proposed by the TDT 2004. This trial evaluation task requires
a large corpus of multilingual news items to be grouped in a structure of
topic coherent clusters. The large size of the corpus and the limited amount
of available processing time pose a challenge for the participants. The sug-
gested directed acyclic graph structure offers rich possibilities for organiz-
ing news items: news items can be assigned to multiple clusters and clus-
ters may be a subset of other clusters.
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The used approach is a combination of classic hierarchical clustering meth-
ods with more recent language modelling techniques. The classic hierarchi-
cal clustering methods produce robust and deterministic cluster structures,
but are in general not applicable for large document collections because of
their complexity (see 2.2.3). Therefore the clustering methods are applied to
a corpus sample of feasible size, resulting in a binary sample cluster struc-
ture. The remaining documents are added to multiple sample clusters, re-
sulting in a fuzzy cluster structure. The cluster structure is optimized for
the evaluation metric by applying a rebranching algorithm which rebuilds
the upper part of the cluster structure.

During the evaluation the obtained cluster structure is compared to topics
from a manually composed ground truth. The evaluation determines to
which extent a cluster structure represents the ground truth and calculates
a “lowest cost cluster” for each truth topic.

The evaluation shows the approach can, to a certain extent, group topically
related news items. The quality of the approximation varies from topic
to topic, some topics are outlined better by the best clusters found than
others. The evaluation shows the recall of the best clusters is high (close to
97%), but the average precision is low (around 5%). Although the precision
should be improved, it shows the method is capable of roughly outlining
topically related groups of news items in a large collection.

Three different hierarchical agglomerative clustering methods were stud-
ied. The metric indicated average pairwise link clustering method outper-
formed single and complete link methods.

The sampling method seems promising in making hierarchical clustering
scalable. The evaluation did not indicate the quality of the cluster structure
deteriorated after adding the remaining documents to the sample cluster
structure. Further research should point out if this indeed is true and to
which extent this sampling method remains usable (see section 6.4).

The proposed rebranching method as intended decreases the cost of the
best clusters judged by the evaluation metric, but if this approach also in-
creases the quality of the clusters is questionable. The method only artifi-
cially rebuilds the top of the cluster structure, without using knowledge of
the document collection (see 3.2.3).

Adding the remaining news items to more than one sample cluster in-
creased the performance measured by the evaluation metric. It is doubted
if this increased fuzziness also improves the quality of the cluster structure.
By adding news items to multiple matching clusters, news items can be
added to neighbouring clusters. If this situation occurs, the cluster struc-
ture may become confusing to understand: if neighbouring clusters over-
lap, should they exist anyway?
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Although the proposed method leaves room for improvement (see further
research in a later section), the evaluation raises several questions about the
used metric. A better metric score does not always seem to correspond with
an increase of the intuitive quality of the cluster structure. The metric sets
a measurable goal for improvements in this area and a wrong evaluation
metric can stimulate ‘improvements’ in the wrong direction. Therefore it
was decided to study and improve the evaluation metric.

6.2 Evaluation of hierarchical cluster structures

The minimal cost metric used for the evaluation compares the clusters in a
cluster structure with the topics from a ground truth and calculates a cost
for each cluster-topic pair. This cost consists of a detection and a travel cost
component. The detection cost measures how effective a particular cluster
represents a topic (in terms of recall and precision). The travel cost ex-
presses the “effort” to reach the cluster when traversing to this cluster from
the root cluster. For each topic the cluster with the lowest cost is sought
and this cluster is appointed best cluster for this topic.

A metric considering both effectiveness of the clusters and user effort to
find these clusters seems useful: it keeps an eye on both the quality and
the usefulness of the cluster structure. The modelling in the minimal cost
metric seems to overshoot this goal however.

The best cluster has a combined score of detection and travel cost. The
travel cost increases for clusters further from the root cluster and it limits
the choice of best clusters. Clusters far down the cluster structure may not
be considered as best cluster although its effectiveness for particular topics
is high (see 4.2.3). This can lead to the false conclusion a cluster method
is not capable of outlining these topics, when only the hierarchy does not
meet the requirements of a low travel cost.

The travel cost to reach a cluster is calculated using the characteristics of
the shortest search path from the root cluster to this cluster. A longer search
path leads to a higher cost, indicating a lower quality. The travel cost im-
plies a relationship between the characteristics of the shortest path to reach
a cluster and the effort to find that cluster. It’s questionable if this rela-
tionship is always correct: a shorter search path does not always imply the
cluster is easier to locate. Removing a valuable layer of abstraction from a
cluster structure, decreasing the travel cost for many clusters, will not likely
decrease the effort to find clusters.

The travel cost should penalize ‘powerset’ structures, structures which con-
tain (a large subset of) all the possible clusters. It in fact cannot discriminate
between powerset and skewed cluster structures (see section 4.2.3).
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Furthermore the travel cost prefers a particular branching factor of the clus-
ters and favours balanced cluster structures (see section 4.2.3).

The travel cost imposes strong, but questionable preferences for particu-
lar cluster structures. In some cases these preferences are correct: a cluster
structure which is very unbalanced might require more effort to reach clus-
ters than a comparable structure which is more balanced. On the other hand
it seems strange to impose a particular preferred branching factor if the
documents don’t give a reason to structure them in such a way.

A major cause in the problems of evaluating hierarchical cluster structures
is the lack of a clearly defined goal. The HTD task does not clearly indicate
what is expected from the cluster structure with “multiple levels of granu-
larity”. Furthermore the application of the hierarchical structure is unclear:
is it used for for example browsing or maybe for some kind of cluster based
retrieval? Not having a clear goal makes it difficult to determine a suitable
metric or metric parameters. Despite an unclear task description a metric
has been used which does clearly define desired properties.

Organizing an evaluation in an unclear setting should provide a playground
for discussion about what can be achieved in HTD and how this can be
measured. The current evaluation metric only presents a narrow view on
the structures. The metric does define the desired cluster structure when
these characteristics are still unclear. Furthermore the provided indicators
do not cover the rich possibilities the new hierarchical structure offers.

Therefore it is suggested to use multiple separate indicators to describe the
quality of a cluster structure. Separate indicators, if clearly defined, give
a clear view of particular characteristics of a cluster structure. The value
should always be assessed in combination with the values of other indi-
cators. New indicators are needed to assess the possibilities the cluster
structure has to offer. These should primarily aim at pointing out the com-
plexity of the cluster structure: the ‘fuzziness’ of the news items and the
connections between the clusters in the structure. A visualization of the
evaluation of a particular topic can give valuable information about how a
cluster structure outlines a topic.

Rather than evaluating a hierarchical cluster structure using a ground truth,
a more theoretical methodology should be sought to assess the originating
cluster method. By using a hierarchical agglomerative clustering method it
was already clear a binary cluster structure would be the result. It’s already
questionable if a binary cluster tree is useful for browsing if the collection
(and the resulting structure) is large. Assigning the remaining news items
to multiple clusters indeed allows news items to cover multiple topics, as
a news item can discuss two particular topics, but if done too excessively
blurs the user’s comprehension of the cluster structure. Although the re-
branching operation partially brings down the top of the binary tree to a
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shallower tree with a higher branching factor, it does not introduce any
useful levels of abstraction. These and more intrinsic properties of HTD
methods might be collected in a framework to compare methods.

6.3 Conclusion

Fully automatic hierarchical topic detection operates between high expecta-
tions of flexible, intuitive taxonomies on one hand and limited computable
models on the other.

The obtained cluster structures do not bring us the clear levels of abstrac-
tion we hoped for, but its tendency to group topically related news items
can be made useful for exploration of a large unknown set of news items.
For such a purpose the lack of precision is acceptable. The hierarchical
structure as it is does not seem directly useful for browsing: especially near
the root cluster, the clusters serve as “glue”: they are simply used to collect
the loose clusters. A method should be developed to make the top of the
cluster structure more useful and to combine superfluous clusters further
down the cluster structure (see future work). At this moment the clusters
are unlabelled bags of documents and child clusters. A labelling algorithm
should be applied to disclose the content of a cluster in a single glance.

The contributions of this work are a twofold.

First of all a simple scalable hierarchical clustering method has been pro-
posed and used to participate in the TDT. With some adjustments the re-
sulting cluster structure can improve exploration of a large unlabelled col-
lection of news items.

The second contribution is a number of insights in the evaluation of hierar-
chical topic structures using a flat ground truth. A loose evaluation using
multiple separated indicators is proposed to stimulate a discussion about
the desired properties of a hierarchical topic structure.

6.4 Future work

During the previous paragraphs multiple suggestions were made for fu-
ture work. This future work is divided in two sections: the first suggests
further research on scalable HTD and to improve its usefulness; the second
suggests research on the evaluation of HTD.



68 Evaluation and discussion

6.4.1 Scalable HTD

The proposed cluster method does not yet produce directly usable cluster
structures. Future work should aim at modifying the cluster structures to
make them directly usable for browsing. This could be done by for ex-
ample subsuming clusters which do not make a clear distinction between
groups of news items. The matching process might provide valuable infor-
mation about documents belonging to one single cluster: if documents are
contained by neighbouring clusters, these clusters might be merged.

Another approach can be merging the cluster structure with an existing
news taxonomy. This improves the understandability of the upper part
of the cluster structure. Appendix E shows some results of merging the
obtained cluster structure in the Reuters news categorization.

Future work can include a study to improve the effectiveness of the clus-
ters. This can include a study of the influence of the document representa-
tion and the influence of the used similarity measure. This work showed
that average pairwise linkage outperformed complete and single linkage.
Interesting would be to find out if and how the average pairwise link might
be improved.

The sample based approach seems a promising method for clustering large
collections. Further research might point out how the size and choice of
this sample influences the quality of the overall cluster structure.

During manual evaluation of the obtained cluster structures became clear
how important the labelling and visualization of the structure is. Further
research could involve development of a graphical user interface for the
cluster structures and labelling algorithm. The labelling process could be
integrated with the clustering process to assure the labels remain informa-
tive and might even serve as feedback to find out if a clustering step is
useful.

6.4.2 Evaluation of HTD systems

Modelling the user effort of finding a cluster to evaluate the user friendli-
ness of a cluster structure would give valuable feedback on a cluster method.
A user experiment could be set up to find out what really influences the us-
ability of a cluster structure. This might be translated to particular values
of evaluation indicators or lead to development of new indicators.

The development of a more theoretical evaluation methodology for hierar-
chical topic detection methods would be useful to step back from the ex-
perimental methodologies. This could include a framework of important
properties of HTD methods.
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This study has shown the importance of understanding the created cluster
structures. This comprehension is not only of importance for evaluating a
cluster structure but maybe even more for using it. By further improving
this comprehension in both construction and evaluation of cluster struc-
tures, hierarchical topic detection can aid more in exploring and navigation
of news archives.
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Appendix A
Cluster structure DMOZ

As a sidestep we will take a look at DMOZ (an acronym for Directory
Mozilla), also known as the Open Directory Project. “The Open Directory
Project is the largest, most comprehensive human-edited directory of the
Web. It is constructed and maintained by a vast, global community of vol-
unteer editors” [DMO05]. The DMOZ is a hierarchical categorization of
over 4 million websites. At the top level abstract categories are defined as
“Sports”, “Arts” and “News” but further down one can find “Criticism”
(as a subcategory of Computers: Programming: Methodologies: Object-
Oriented).

Figure A.1 shows the cluster structure of DMOZ concerning the number
of clusters having child clusters and the average number of child clusters
(the branching factor) per cluster (if such a cluster has children). At the top
level the structure has a branching factor of 17; the top level cluster has 17
children. These 17 cluster all have child clusters, with an average of 37.5
child clusters. The point we would like to make is that the DMOZ cluster
structure is not balanced at all; some clusters don’t have child clusters be-
low depth two, where some clusters have child clusters at depth thirteen!
We argue that, as the articles from a news archive might be as diverse as
websites from the DMOZ directory, a cluster structure for a news archive
does not need to be balanced nor do the clusters need to kept to a fixed
branching factor.
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root

depth 1

1 cluster

17 clusters

branching factor 17

depth 2
638 clusters

515 having children

branching factor 37.5

depth 3
7,478 clusters

4,158 having children

branching factor 14.5

depth 4
36,994 clusters

13,363 having children

branching factor 8.9

depth 5
82,200 clusters

19,607 having children

branching factor 6.2

depth 6
99,881 clusters

25,425 having children

branching factor 5.1

depth 7
152,123 clusters

40,223 having children

branching factor 6

depth 8
144,384 clusters

34,647 having children

branching factor 3.6

depth 9
87,996 clusters

14,158 having children

branching factor 2.5

depth 10
38,895 clusters

3,362 having children

branching factor 2.7

depth 11
8,552 clusters

840 having children

branching factor 2.5

depth 12
2,003 clusters

129 having children

branching factor 2.4

depth 13
199 clusters

5 having children

branching factor 1.5

depth 14 11 clusters

branching factor 2.2

Figure A.1: Cluster structure of DMOZ



Appendix B
HAC methods and document
discrimination

In this appendix a small example will show how the distances between doc-
uments change by clustering using single, complete and average pairwise
link.

Assume five documents of equal length, D1 to D5. They all contain three
terms, a subset of {a . . . h, p . . . r}:

• D1 = {c, d, e}

• D2 = {d, e, f}

• D3 = {a, b, c}

• D4 = {f, g, h}

• D5 = {p, q, r}

Or in a term vector (‘-’ marks no occurrences):

a b c d e f g h p q r
D1 - - 1 1 1 - - - - - -
D2 - - - 1 1 1 - - - - -
D3 1 1 1 - - - - - - - -
D4 - - - - - 1 1 1 - - -
D5 - - - - - - - - 1 1 1

As a similarity function we will simply use the number of overlapping
terms. The following distance matrix can be created:
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D1 D2 D3 D4

D2 2 - - -
D3 1 0 - -
D4 0 1 0 -
D5 0 0 0 0

All three methods will choose D1 and D2 as first pair of documents to clus-
ter, as the overlap is the largest. This call newly created cluster is Dx. The
distance between the remaining (document)clusters and Dx has to be cal-
culated and this calculation depends on which HAC method is used. The
following table shows the new distances using single, complete and aver-
age pairwise link.

Single Complete Average
Dx Dx Dx

D3 1 0 1
D4 1 0 1
D5 0 0 0

Notice that the complete linkage method throws away all distance knowl-
edge from the children of Dx: D1 and D2 don’t have overlapping terms
overlapping with all the remaining documents.

Likewise can be shown how single linkage ‘chains’ two at first sight unre-
lated documents.

Average pairwise link doesn’t suffer from these extremes.



Appendix C
Developed software

Software has been written in Java for this project. In this appendix the
most important components are briefly mentioned; the Javadoc found in
the source code gives further details.

Package nl.tno.htd.structures

Contains the main data structures: Clustering, Cluster, Document). Con-
tains implementations for a cluster structure stored in an xml-file and a
database.

Package nl.tno.htd.clusterbrowser

Contains classes for the ClusterBrowser user interface. The main program
is started with:

java nl.tno.htd.clusterbrowser.ClusterBrowser

Subpackage clusteringtree

Contains classes for the clustering tree which displays a Clustering in a tree
structure.

Subpackage lucene

Contains classes for a searchframe using Lucene.
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Package nl.tno.htd.evaluation

Contains classes for evaluating a cluster structure using a ground truth and
which creates Dot files for visualizing the evaluation of a topic. The evalu-
ation can be run with:

java nl.tno.htd.evaluation.Evaluate

Package nl.tno.htd.tools

Contains a number of commandline tools for modifying and exporting
cluster structures.

• ClusterTransformer can rebranch a clustering or add matching
documents.

• DetectClusterPlagiaat uses legacy software to indicate if a clus-
ter contains near-duplicates.

• DotExporter exports a cluster structure for visualization using Dot.

• GroundTruthAnalyzer creates a LATEX file with histograms of the
time distributions of ground truth topics.

• TreeMapExporter exports a cluster structure to a file readable by
TreeMap (see www.cs.umd.edu/hcil/treemap/ ).

Package nl.tno.htd.lucene

Contains classes for indexing a database containing text assets using the
Lucene open source search engine. The main program can be run with:

java nl.tno.htd.lucene.IndexDbAssets

Package nl.tno.htd.reuters

Contains classes for indexing the Reuters text collection with Lucene and
for “annotating” a cluster structure with the topics and countries used for
Reuters. Main programs:

java nl.tno.htd.reuters.AnnotateClusteringDocuments
java nl.tno.htd.reuters.ReuterizeClustering
java nl.tno.htd.reuters.index.CreateReutersIndex

www.cs.umd.edu/hcil/treemap/
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Package nl.tno.htd.dmoz

Contains classes to visualize the dmoz cluster structure (see appendix A).

Package nl.tno.htd.utils

Some useful (non-specific) data structures.
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Appendix D
Evaluation results

In this appendix the evaluation of various cluster structures of the TDT 3
corpus can be found.

The tables show for each topic the topicfuzziness, the number of topicrel-
evant clusters and the indicator values of the most effective topicrelevant
cluster (i.e. having the lowest detection cost).
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Appendix E
Demonstration

In this appendix a few demonstrations are given to actually use the created
cluster structure. The goal of this appendix is to show that despite its lack
of precision, the cluster structure still is capable of providing an interface
for exploring and navigating a collection of documents. The appendix will
not give an in depth analysis of these visualizations, but hopes to serve as
an inspiration for further research and experiments to utilize the proposed
cluster structure.

E.1 Visualization in a tree

A simple tree widget available as a basic user interface component in most
operating systems can be used to display the directed acyclic graph. Fig-
ure E.1 shows two examples of such a visualization.

Until now, no metadata was added to the created clusters. The clusters
were nameless and only identifiable by its relationships with other clusters
and documents. A simple labelling algorithm is used to describe the clus-
ters: the most informative bigrams (sequences of two terms) in the doc-
uments contained by the cluster. The result is also shown in figure E.1.
Notice that the parent label is the same as the label of the child cluster con-
taining the most documents. As a result the child cluster cannot be easily
located as it is overgrown by a large “brother”. Furthermore the binary
branching factor requires much effort to acquire more information: many
clicks are needed to reveal more information.

To overcome this problem a slider is added, which can cut the cluster struc-
ture at a certain dissimilarity threshold. Clusters higher in the tree have a
higher dissimilarity value than their children. The clusters which have a

93



94 Demonstration

(a) Before

(b) After

Figure E.1: The result of labelling

dissimilarity just below the threshold and have a parent with a dissimilar-
ity above the threshold are used as the top level clusters in the treeview.

Figure E.2 shows the result of cutting the cluster structure at a high level.
Note that the number of clusters displayed as root has increased, but also
more information has become available about the document collection.

Cutting at a lower level presents the user with a long list of clusters, some-
times having overlapping bigrams. Figure E.3 shows a screenshot of such
a cut.

Obviously this is only a start to visualize the structure using a treeview.
Possible improvements could be another slider to filter on the size of clus-
ters, or an option to gather intersting clusters (found during some browsing
session) in a personalized basket.

E.2 “Reuterizing” the cluster structure

In an attempt to make the top of the cluster structure more usable, a small
experiment was carried out using the Reuters Corpus. The Reuters Corpus
is a large collection of news items, each item is annotated with the geo-
graphic location and a general news category (e.g. sports, education, crime
etc).

By creating an index of the Reuters documents the documents from a clus-
ter structure can be “annotated”: the documents are used as queries and the
annotation of the best Reuters documents is used as annotation. The clus-
ter structure is cut at some level (as described before), and the root clusters
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Figure E.2: Cutting at a certain dissimilarity level

are annotated using the annotation of the documents contained in those
clusters. If for example a cluster contains 30 documents and 15 documents
have been annotated with the category “crime”, the cluster is annotated
with this category.

The resulting ”merged” cluster structure offers potential; some clusters are
assigned correctly to a particular country or category. Figures E.4 and E.5
give a small impression of the results. The approach gives the impression
that using these strict categorization does rise user expectations of a partic-
ular cluster: A label ”Romania” does give the impression the child clusters
are only about events in Romania; an incorrectly annotated child cluster
seems to disappoint more when the label is less ambiguous.
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Figure E.3: Cutting at a lower dissimilarity level yields more clusters

Figure E.4: Using Reuters countries
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Figure E.5: Using Reuters categories
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